2022, Number 286
<< Back Next >>
16 de abril 2022; 61 (286)
Biological aging: the role of mitochondria and free radicals
Fajardo-Quesada AJ, Licea-González MÁ
Language: Spanish
References: 35
Page: 1-7
PDF size: 308.14 Kb.
ABSTRACT
Introduction: in the search for the cause of biological aging, numerous theories have emerged, such as that of free radicals,
this has located mitochondria in many studies due to its involvement in their production.
Objective: to describe the role of free
radicals produced in mitochondria in cellular and biological aging.
Method: An exhaustive bibliographic review was carried out
by searching the SciELO database and journals from the academic publisher Multidisciplinary Digital Publishing Institute (MDPI).
The descriptors used were: "Mitochondria", "Aging", "Free radicals", "Oxidative stress", "Antioxidants", in Spanish; for the English
language, the following were used: “Mitochondria”; “Aging”, “Free radicals”, “Oxidative stress”, “Antioxidants”. The search period
included the months between June and August 2021. 78 articles were consulted, of which only 35 were chosen.
Development:
mitochondria is where free radicals are most produced, these are capable of altering all biomolecules and destroying them especially
the mitochondrial ones. The use of antioxidants has shown to be useful in slowing down aging and diseases associated
with it.
Conclusions: the primary theory that tries to explain biological aging is that of free radicals, although it has detractors
with justified approaches. The involvement of mitochondria in aging is a fact and based on this, methods are sought to slow it
down.
REFERENCES
Jang JY, Blum A, Liu J, Finkel T.The role of mitochondria in aging. J ClinInvest [Internet]. 2018 [citado 11/08/21];128(9):3662–70. Disponible en: . https://doi.org/10.1172/JCI120842
Moro L. Mitochondrial Dysfunctionin Aging and Cancer. J Clin Med [Internet].2019 [citado 11/08/21]; 8(11):1983.Disponible en: https://doi.org/10.3390/jcm8111983
León Regal ML, Cedeño MoralesR, Rivero Morey RJ, Rivero Morey J,García Pérez DL, Bordón González L. Lateoría del estrés oxidativo como causadirecta del envejecimiento celular. Medisur[Internet]. 2018 [citado 11/08/2021];16(5):699-710. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1727-897X2018000500012&lng=es
Warraich UE, Hussain F, KayaniHUR. Aging - Oxidative stress, antioxidantsand computational modeling. Heliyon.[Internet]. 2020 [citado 11/08/2021];6(5):e04107. Disponible en: https://doi.org/10.1016/j.heliyon.2020.e04107
Rico-Rosillo MG, Oliva-Rico D,Vega-Robledo GB. Envejecimiento: algunasteorías y consideraciones genéticas, epigenéticasy ambientales. Rev Méd Inst Mex SeguroSoc [Internet]. 2018 [citado 11/08/21];56(3):287-94. https://www.redalyc.org/journal/4577/457757174017/457757174017.pdf
Coutiño Rodríguez EM del R,Arroyo Helguera OE, Herbert Doctor LA.Envejecimiento biológico: Una revisiónbiológica, evolutiva y energética. Rev Fesahancccal[Internet]. 2020 [citado 05/08/21];6(2):20–31. Disponible en: http://www.revistafesahancccal.org/index.php/fesahancccal/article/view/54
De Jaeger C. Fisiología del envejecimiento.EMC - Kinesiterapia - MedFísica [Internet]. 2018 [citado 11/08/21];39(2):1–12. Disponible en: https://doi.org/10.1016/S1293-2965(18)89822-X
Hernández García F, RobainaCastillo JI, Vázquez Almoguera E. Estrésoxidativo y diabetes mellitus, un acercamientoal tema. Univ Médica Pinareña [Internet].2018 [citado 02/08/21]; 13(2):69–85. Disponible en: http://www.revgaleno.sld.cu/index.php/ump/article/view/262
Viada Pupo E, Gómez Robles L,Campaña Marrero IR. Estrés oxidativo. CorreoCientífico Médico de Holguín [Internet].2017 [citado 02/08/21]; 21(1):171–186.Disponible en: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=71540
Carvajal Carvajal C. Especiesreactivas del oxígeno: formación, funciony estrés oxidativo. Med Leg CostaRica [Internet]. 2019 [citado 02/08/21];36(1):91–100. Disponible en: https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-00152019000100091
Stefanatos R, Sanz A. The role ofmitochondrial ROS in the aging brain. FEBSLett [Internet]. 2018 [citado 10/08/21];592(5):743–58. Disponible en: https://doi.org/10.1002/1873-3468.12902
Hidalgo MA. Estrés oxidativo yantioxidantes. Av en Investig Agropecu [Internet].2018 [citado 10/08/21]; 22(1):29–46. Disponible en: https://www.redalyc.org/journal/837/83757421004/83757421004.pdf
Sánchez Urbina R, Avilés MartínezKI, Pérez Díaz CI, Zamora Pérez AL,Ortiz García YM, Pérez Rulfo ID. Daño alADN en neonatos de madres con sobrepeso.Rev Médica MD [Internet]. 2017 [citado09/08/21]; 8(4):140–5. Disponible en:https://www.imbiomed.com.mx/articulo.php?id=109470
Grimm A, Eckert A. Brain agingand neurodegeneration: from a mitochondrialpoint of view. J Neurochem [Internet].2017 [citado 09/08/21]; 143(4):418–31.Disponible en: https://pubmed.ncbi.nlm.nih.gov/28397282/
Ortiz Escarza JM, MedinaLópez ME. Estrés oxidativo ¿un asesinosilencioso? Educ química [Internet].2020 [citado 03/08/21]; 31(1):1–11. Disponibleen: https://doi.org/10.22201/fq.18708404e.2020.1.69709
Singh A, Kukreti R, Saso L, KukretiS. Oxidative Stress: A Key Modulator in NeurodegenerativeDiseases. Mol [Internet].2019 [citado 02/08/21]; 24(8):1583. Disponibleen: https://www.mdpi.com/1420-3049/24/8/1583/htm
Martín-Fernández B, Gredilla R.Estrés oxidativo mitocondrial y envejecimientocardíaco. Clínica e Investig en Arterioscler[Internet]. 2018 [citado 05/08/21];30(2):74–83. Disponible en: https://doi.org/10.1016/j.arteri.2017.12.002
Theurey P, Pizzo P. The Aging Mitochondria.Genes (Basel) [Internet]. 2018[citado 08/08/21]; 9(1):22. Disponible en:https://doi.org/10.3390/genes9010022
Haas RH. Mitochondrial Dysfunctionin Aging and Diseases of Aging.Biol [Internet]. 2019 [citado 09/08/21];8(2):48. Disponible en: https://www.mdpi.com/2079-7737/8/2/48/htm
Kowalska M, Piekut T, PrendeckiM, Sodel A, Kozubski W, Dorszewska J.Mitochondrial and Nuclear DNA OxidativeDamage in Physiological and PathologicalAging. DNA Cell Biol [Internet]. 2020 [citado09/08/21]; 39(8):1410–20. Disponible en:https://doi.org/10.1089/dna.2019.5347
Nilsson MI, Tarnopolsky MA.Mitochondria and Aging—The Role ofExercise as a Countermeasure. Biol [Internet].2019 [citado 11/08/21]; 8(2):40.Disponible en: https://doi.org/10.3390/biology8020040
Molina I, Solórzano E. ¿La senescenciacelular promueve el envejecimientobiológico? Acta bioclinica. 2021;11(22):241-74.
Zsurka G, Peeva V, Kotlyar A,Kunz WS. Is There Still Any Role for OxidativeStress in Mitochondrial DNA-DependentAging? Genes (Basel) [Internet]. 2018[citado 11/08/21]; 9(4):175. Disponible en:https://doi.org/10.3390/genes9040175
Pérez Rodríguez ML, CamejoExpósito M. Consideraciones sobre larelación ejercicio físico-estrés oxidativo.Podium [Internet]. 2018 [citado 11/08/21];13(1):88–93. Disponible en: https://podium.upr.edu.cu/index.php/podium/article/view/740/776
Zia A, Farkhondeh T, PourbagherShahri AM, Samarghandian S. TheRoles of mitochondrial dysfunction andReactive Oxygen Species in Aging andSenescence. Curr Mol Med [Internet].2021 [citado 17/08/21]; 22(1):37-49. Disponibleen: https://europepmc.org/article/med/33602082
Sánchez Valle V, Méndez SánchezN. Estrés oxidativo, antioxidantes yenfermedad. Médica Sur [Internet]. 2013[citado 11/08/21]; 20(3):161–8. Disponibleen: https://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO=79284
Panov AV, Dikalov SI. Cardiolipin,Perhydroxyl Radicals, and Lipid Peroxidationin Mitochondrial Dysfunctions and Aging.Oxid Med Cell Longev [Internet]. 2020[citado 17/08/21]; 1323028. Disponible en:https://doi.org/10.1155/2020/1323028
Son JM, Lee C. Mitochondria:multifaceted regulators of aging. BMB Rep[Internet]. 2019 [citado 10/08/21]; 52(1):13-23. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386233/
Calderón-Peña A, Aspajo-VillalazC, Pretel-Sevillano O. Estrés oxidativo y especiesreactivas. REBIOL. [Internet]. 2018[citado 11/08/21]; 38(2):53–65. Disponibleen: https://dialnet.unirioja.es/servlet/articulo?codigo=8143237
Chaudhari SN, Kipreos ET. TheEnergy Maintenance Theory of Aging:Maintaining Energy Metabolism to AllowLongevity. BioEssays [Internet]. 2018 [citado10/08/21]; 40(8):1800005. Disponibleen: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314662/
Son JM, Lee C. Aging: All roadslead to mitochondria. Semin Cell Dev Biol.[Internet]. 2021 [citado 10/08/21]; 116:160–8. Disponible en: https://doi.org/10.1016/j.semcdb.2021.02.006
Nicolson G, Breeding P, Settineri R,Mattos GF de. Aging and chronic illnesses:Membrane Lipid Replacement for restoringmitochondrial function and reducing fatigue,pain, and other symptoms in aged individuals.Bioact Compd Heal Dis [Internet].2020 [citado 17/08/21]; 3(10):194–203.Disponible en: https://www.ffhdj.com/index.php/BioactiveCompounds/article/view/749/1340
Yadav S, Maurya PK. Biomedicalapplications of metal oxide nanoparticlesin aging and age-associated diseases. 3Biotech [Internet]. 2021 [citado 17/08/21];11(7):1–15. Disponible en: https://doi.org/10.1007/s13205-021-02892-8
Guillaumet-Adkins A, Yañez Y,Peris-Diaz MD, Calabria I, Palanca-BallesterC, Sandoval J. Epigenetics andOxidative Stress in Aging. Oxid Med CellLongev. [Internet]. 2017 [citado 17/08/21];2017:1–8. Disponible en: https://doi.org/10.1155/2017/9175806
Pascual-Ahuir A, Manzanares-EstrederS, Proft M. Pro- and AntioxidantFunctions of the Peroxisome-MitochondriaConnection and Its Impact on Aging and Disease.Oxid Med Cell Longev [Internet]. 2017[citado 11/08/21]; 2017:1–17. Disponibleen: https://doi.org/10.1155/2017/9860841