medigraphic.com
SPANISH

Revista Latinoamericana de Infectología Pediátrica

ISSN 2683-1678 (Print)
Órgano Oficial de la Sociedad
Latinoamericana de lnfectología Pediátrica.
Órgano de la Asociación Mexicana de
Infectología Pediátrica, A.C.
Órgano difusor de la Sociedad Española
de lnfectología
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 2

<< Back Next >>

Rev Latin Infect Pediatr 2025; 38 (2)

Hospital-use biocides and their effect on the induction of bacterial resistance

González AE, González SSK, Reyes GU, Yalaupari MJP, Hernández PM, Reyes HKL, Carreón GJM, López CG, Ayuso VC, Quero HA
Full text How to cite this article 10.35366/121469

DOI

DOI: 10.35366/121469
URL: https://dx.doi.org/10.35366/121469

Language: Spanish
References: 69
Page: 84-91
PDF size: 303.93 Kb.


Key words:

antibacterials, biocides, genetic expression, nosocomial infections, resistance mechanism.

ABSTRACT

Bacterial resistance to antimicrobials by environmental and hospital germs is a public health problem in the world, essentially due to their genetic variability and can transfer these resistomes, giving rise to limited therapeutic options, increasing medical interventions with a subsequent increase in public health expenses. Cross-resistance between antibacterials and biocides is a reality today, influenced by concentration, overexposure, bacterial susceptibility, and the selective pressure exerted by their use and abuse. The associated resistance mechanisms are: alterations in membrane permeability, alterations in intracellular concentration, as well as the cellular capacity to expel them to the outside and depend on intrinsic factors, which are the most studied and are chromosomally encoded. Efflux pumps in Gram-negative and Gram-positive bacteria are the most widely reported, they are the best example of cross-resistance between biocides and antibacterials, five families of them are known, four mechanisms are described in the regulation of their gene expression, so they are microorganism-dependent, resulting in decreased sensitivity, changes in their virulence and environmental adaptability. The present review addresses this growing phenomenon and provides guidelines on how this resistance could be avoided.


REFERENCES

  1. Courvalin P. Predictable and unpredictable evolution of antibiotic resistance. J Intern Med. 2008; 264 (1): 4-16.

  2. Thomsen NA, Hammer KA, Riley TV. Tea-tree oil a naturally occurring biocide. Off J Aust Soc Microbiol Inc. 2010; 31 (4): 182-184.

  3. Masi M, Pagés JM. Structure, function and regulation of outer membrane proteins involved in drug transport in Enterobactericeae: the OmpF/C - TolC case. Open Microbiol J. 2013; 7 (1-M2): 22-33.

  4. McDonnell G, Russell D. Antiseptics and disinfectants: activity action, and resistance. Clin Microbiol Rev. 1999; 12 (1): 147-179.

  5. Sengupta S, Chattopadhyay MK, Grossart HP. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol. 2013; 4: 47.

  6. Baquero F. Environmental stress and evolvability in microbial systems. Clin Microbiol Infect. 2009; 15 Suppl 1: 5-10.

  7. Carson RT, Larson E, Levy SB, Marshall BM, Aiello AE. Use of antibacterial consumer products containing quaternary ammonium compounds and drug resistance in the community. J Antimicrob Chemother. 2008; 62 (5): 1160-1162.

  8. Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD et al. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One. 2012; 7 (4): e34953.

  9. Nesme J, Cecillon S, Delmont TO, Monier JM, Vogel TM, Simonet P. Large scale metagenomic based study of antibiotic resistance in the environment. Curr Biol. 2014; 24 (10): 1096-100.

  10. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003; 67 (4): 593-596.

  11. Maillard JY. Emergence of bacterial resistance to microbicides and antibiotics. Off J Aust Soc Microbiol Inc. 2010; 31 (4): 159-164.

  12. Llor C. ¿Puede mejorar el consumo de antimicrobianos en los pacientes ambulatorios de nuestro país? Enferm Infecc Microbiol Clin. 2014; 32: 409-411.

  13. Livermore DM, Pearson A. Antibiotic resistance: location, location, location. Clin Microbiol Infect. 2007; 13 (Suppl 2): 7-16.

  14. Cotta MO, Roberts JA, Lipman J. Antibiotic dose optimization in critically ill patients. Med Intensiva. 2015; 39 (9): 563-572.

  15. Calvo J, Martínez-Martínez L. Mecanismos de acción de los antimicrobianos. Enferm Infecc Microbiol Clin. 2009; 27 (1): 44-52.

  16. Merlino J, Brown M. Biocides in the Health Industry. Off J Aust Soc Microbiol Inc. 2010; 31 (4): 158.

  17. Gnanadhas DP, Marathe SA, Chakravortty D. Biocides--resistance, cross-resistance mechanisms and assessment. Expert Opin Investig Drugs. 2013; 22 (2): 191-196.

  18. Russell AD. Introduction of biocides into clinical practice and the impact on antibiotic-resistance bacteria. J Appl Microbiol. 2002; (31): 121S-135S.

  19. White DG, McDermott PF. Biocides, drug resistance and microbial evolution. Curr Opin. Microbiol. 2001; 4 (3): 313-317.

  20. Alós JI. Resistencia bacteriana a los antibióticos: una crisis global. Enferm Infecc Microbiol Clin. 2015; 33 (10): 692-699.

  21. Antibiotic Resistance Threats in the United States, 2013. http://www.cdc.gov.abcs/index.html [Accessed 5/23/2013].

  22. Regli AD, Pagés JM. Cross-resistance between biocides and antimicrobials: an emerging question. Rev Sci Tech. 2012; 31 (1): 89-104.

  23. Dantas G, Sommer MO, Oluwasegun RD, Church GM. Bacteria subsisting on antibiotics. Science. 2008; 320 (5872): 100-103.

  24. Derewacz DK, Goodwin CR, McNees CR, McLean JA, Bachmann BO. Antimicrobial drug resistance affects broad changes in metabolomic phenotype in addition to secondary metabolism. Proc Natl Acad Sci U. S. A. 2013; 110 (6): 2336-2341.

  25. Olivares J, Bernardini A, Garcia-Leon G, Corona F, B Sanchez M, Martinez JL. The intrinsic resistome of bacterial pathogens. Front Microbiol. 2013; 4: 103.

  26. Gillings MR. Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Front Microbiol. 2013; 4: 4.

  27. Davies J, Spiegelman GB, Yim G. The world of subinhibitory antibiotic concentrations. Curr. Opin Microbiol. 2006; 9 (5): 445-453.

  28. Maillard JY. Bacterial resistance to biocides in the health care environment: should it be of genuine concern? J Hosp Infect. 2007; 65 (Suppl 2): 60-72.

  29. Escalada MG, Russell AD, Maillard JY, Ochs D. Triclosan-bacteria interactions: single or multiple target sites? Lett Appl Microbiol. 2005; 41 (6): 476-481.

  30. Oliver A, Canton R, Campo P, Baquero F, Blazquez J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science. 2000; 288 (5469): 1251-1254.

  31. Falush D. Toward the use of genomics to study microevolutionary change in bacteria. PLoS Genet. 2009; 5 (10): e1000627. doi: 10.1371/journal. pgen.1000627

  32. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 2012; 337 (1): 107-111.

  33. Wright GD. The antibiotic resistome. Expert Opin Drug Discov. 2010; 5 (8): 779-788.

  34. López DNE, González PVY, Hernández BRJ, Alarcón AA, Luna LA, Konigsberg FM. Hormesis: lo que no mata, fortalece. Gac Méd Méx. 2013; 149 (4): 438-447.

  35. Alvarez OC, Olivares J, Martínez JL. RND multidrug efflux pumps: what are they good for? Front Microbiol. 2013; 4: 7.

  36. Dupont M, James CE, Chevalier J, Pagés JM. An early response to environmental stress involves regulation of OmpX and OmpF, two enterobacterial outer membrane pore-forming proteins. Antimicrob Agents Chemother. 2007; 51 (9): 3190-3198.

  37. Pérez CHJ, Robles CA. Aspectos básicos de los mecanismos de resistencia bacteriana. Rev Médica MD. 2013; 4 (3): 186-191.

  38. Webber MA, Piddock LJV. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother. 2003; 51 (1): 9-11.

  39. Piddock LJV. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev. 2006; 19 (2): 382-302.

  40. Tauch A, Schlüter A, Bischoff N, Goesmann A, Meyer F, Pühler A. The 79,370-bp conjugative plasmid pB4 consists of an IncP-1β backbone loaded with a chromate resistance transposon, the strA-strB streptomycin resistance gene pair, the oxacillinase gene bla NPS-1, and a tripartite antibiotic efflux system. Mol Genet Genomics. 2003; 268 (5): 570-584.

  41. Hassan KA, Baltzer SA, Paulsen IT, Brown M. Pumping out biocides – cause for concern? Off J Aust Soc Microbiol Inc. 2010; 31 (4): 178-181.

  42. Van Bambeke F, Glupzynski Y, Plesiat P. Antibiotic efflux pumps in prokaryotic cells: occurrence, impact for resistance and strategies for the future of antimicrobial therapy. J Antimicrob Chemother. 2003; 51 (5): 1167-1173.

  43. Midgley M. The phosphonium ion efflux system of Escherichia coli: a relationship to the ethidium efflux system and energetic studies. J Gen Microbiol. 1986; 132 (11): 3187-3193.

  44. Miller PF, Sulavik MC. Overlaps and parallels in the regulation of intrinsic multiple-antibiotic resistance in Escherichia coli. Mol Microbiol. 1996; 21 (3): 441-48.

  45. Nikaido H. Multidrug efflux pumps of gram-negative bacteria. J Bacteriol. 1996; 178 (20): 5853-5859.

  46. Webber MA, Bailey AM, Blair JM, Morgan E, Stevens MP, Hinton JC et al. The global consequence of disruption of the AcrAB-TolC efflux pump in Salmonella enterica includes reduced expression of SPI-1 and other attributes required to infect the host. J Bacteriol. 2009; 191 (13): 4276-4285.

  47. Symmons MF, Bokma E, Koronakis E, Hughes C, Koronakis V. The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc Natl Acad Sci U. S. A. 2009; 106 (17): 7173-7178.

  48. Buffet-Bataillon S, Le Jeune A, Le Gall-David S, Bonnaure-Mallet M, Jolivet-Gougeon A. Molecular mechanisms of higher MICs of antibiotics and quaternary ammonium compounds for Escherichia coli isolated from bacteraemia. J Antimicrob Chemother. 2012; 67 (12): 2837-2842.

  49. Pérez A, Poza M, Fernández A, Fernández M del C, Mallo S, Merino M et al. Involvement of the AcrAB-TolC efflux pump in the resistance, fitness, and virulence of Enterobacter cloacae. Antimicrob Agents Chemother. 2012; 56 (4): 2084-2090.

  50. Jack DL, Yang NM, Saier MH. The drug/metabolite transporter superfamily. Eur J Biochem. 2001; 268 (13): 3620-3639.

  51. Díaz MJJ, Amábile CCF, Rosas I, Souza V. An analysis of the evolutionary relationships of integron integrases, with emphasis on the prevalence of class 1 integrons in Escherichia coli isolates from clinical and environmental origins. Microbiology. 2008; 154 (Pt 1): 94-102.

  52. Byrne-Bailey KG, Gaze WH, Zhang L, Kay P, Boxall A, Hawkey PM et al. Integron prevalence and diversity in manured soil. Appl Environ Microbiol. 2011; 77 (2): 684-687.

  53. Nikaido H, Pagés JM. Broad-specificity efflux pumps and their role in multidrug resistance of gram-negative bacteria. FEMS Microbiol Rev. 2012; 36 (2): 340-363.

  54. McMurry LM, Oethinger MLS. Overexpression of marA, soxS, or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli. FEMS Microbiol Lett. 1998; 166 (2): 305-309.

  55. Zhi XL, Nikaido H. Efflux-mediated drug resistance in bacteria: an update. Drugs. 2009; 69 (12): 1555-1523.

  56. Ruiz C, Levy SB. Many chromosomal genes modulate MarA-mediated multidrug resistance in Escherichia coli. Antimicrob Agents Chemother. 2010; 54 (5): 2125-2134.

  57. Ahlbom A, Bridges J, De Jong W, Hartemann P, Jung T, Mattsson MO et al. Assessment of the antibiotic resistance effects of biocides. European Commission. Scientific Committee on Emerging and Newly Identified Health Risks. SCENIHR. 2009; 1-87.

  58. Centers for Disease Control. Disinfectant or infectant: the label doesn't always say. Atlanta: National Nosocomial Infections Study, Fourth Quarter 1973; 1974. p. 18-23.

  59. Smith K, Hunter IS. Efficacy of common hospital biocides with biofilms of multi-drug resistant clinical isolates. J Med Microbiol. 2008; 57 (Pt 8): 966-973.

  60. Tabak M, Scher K, Hartog E, Romling U, Matthews KR, Chikindas ML et al. Effect of triclosan on Salmonella typhimurium at different growth stages and in biofilms. FEMS Microbiol Lett. 2007; 267: 200-206.

  61. Oggioni MR, Furi L, Coelho JR, Maillard JY, Martínez JL. Recent advances in the potential interconnection between antimicrobial resistance to biocides and antibiotics. Expert Rev Anti Infect Ther. 2013; 11 (4): 363-366.

  62. Fraise AP. Susceptibility of antibiotic-resistant cocci to biocides. J Appl Microbiol. 2002; 92 Suppl: 158S-162S.

  63. Braoudaki M, Hilton AC. Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to antimicrobial agents. J Clin Microbiol. 2004; 42 (1): 73-78.

  64. McCay PH, Ocampo SAA, Fleming GTA. Effect of subinhibitory concentrations of benzalkonium chloride on the competitiveness of Pseudomonas aeruginosa grown in continuous culture. Microbiology. 2010; 156 (Pt 1): 30-38.

  65. Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PG, Borak J, Cai L et al. Biological stress response terminology. Toxicol Appl Pharm. 2007; 222 (1): 122-128.

  66. Bader MW, Navarre WW, Shiau W, Nikaido H, Frye JG, McClelland M et al. Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol Microbiol. 2003, 50 (1): 219-230.

  67. Higgins CS, Murtough SM, Williamson E, Hiom SJ, Payne DJ, Russell AD, Walsh TR. Resistance to antibiotics and biocides amoné non-fermenting Gram-negative bacteria. Clin Microbiol Infect. 200;7(6):308-315.

  68. Chapman JS. Disinfectant resistance mechanisms, cross resistance, and co-resistance. Int Biodeter Biodegrad. 2003; 51 (4): 271-276.

  69. Randall LP, Cooles SW, Piddock LJ, Woodward MJ. Effect of triclosan or a phenolic farm disinfectant on the selection of antibiotic resistant Salmonella enterica. J Antimicrob Chemother. 2004; 54 (3): 621-627.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Latin Infect Pediatr. 2025;38