2025, Number 08
<< Back Next >>
Med Int Mex 2025; 41 (08)
NLRP3 inflammasome in health and disease
Rodríguez OAR, Ocegueda GS, Galán CJC, Barrientos RBG, Montelongo OJL, García PME
Language: Spanish
References: 61
Page: 498-511
PDF size: 280.41 Kb.
ABSTRACT
Objective: To update the state of knowledge on the NLRP3 inflammasome, its activation
and regulation, and related diseases.
Methodology: A review of the PubMed and Google Scholar databases was conducted
to identify clinical trials and review articles published from February 2021 to
February 2024 that followed the PRISMA methodology.
Results: The NLRP3 inflammasome remains in a self-suppressed and inactive state.
To activate, it requires a second signal, which can originate from pathogens or stressassociated
danger pathways. The activation of the NLRP3 inflammasome is linked to
several types of cell death. In these types of cell death, an imbalance in signaling mediated
by reactive oxygen species and changes in potassium flow play a key role, resulting
in a failure to respond to oxidative stress. The NLRP3 inflammasome is maintained in
an inactive state and requires a second signal to activate. This signal may come from
pathogens or stress-associated danger pathways. The activation or inhibition of NLRP3
is involved in regulating the inflammatory process that amplifies cell damage.
Conclusion: Uncontrolled activation or inhibition of NLRP3 could lead to dysregulation
of the inflammatory process that amplifies cell damage in diseases associated
with chronic inflammation.
REFERENCES
Bottasso O. La inflamación en el siglo XXI, desde los conceptosclásicos a una visión más extendida. Pinelatam 2022; 2 (2): 116-24. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/38192
Aquino-Domínguez AS, Romero-Tlalolini MA, Aguilar-RuizSR. Los receptores del sistema inmunitario innato. https://uabjo.slm.cloud/?a=article.main&d=true&tf=article&id=WPbIfIQBxoz2Skqwc6DB
Rehwinkel J, Gack MU. RIG-I-like receptors: their regulationand roles in RNA sensing. In Nature Reviews Immunology2020; 20 (9): 537-51). https://doi.org/10.1038/s41577-020-0288-3
Sanz JM, Gómez Lahoz AM, Martín RO. Papel del sistemainmune en la infección por el SARS-CoV-2: inmunopatologíade la COVID-19. Medicine 2021; 13 (33): 1917-31. http://dx.doi.org/10.1016/j.med.2021.05.005
Koncz G, Jenei V, Tóth M, Váradi E, Kardos B, Bácsi A, etal. Damage-mediated macrophage polarization in sterileinflammation. Frent Immunol 2023;14. http://dx.doi.org/10.3389/fimmu.2023.1169560
Mnich ME, van Dalen R, van Sorge NM. C-Type lectin receptorsin host defense against bacterial pathogens. FronCell Infect Microbiol 2020; 10. http://dx.doi.org/10.3389/fcimb.2020.00309
González HV. Enfermedades autoinflamatorias sistémicas,entidades en auge: generalidades, principales síndromesmonogénicos y aproximación al manejo terapéutico.Galicia Clin 2023; 84 (1): 26. https://galiciaclinica.info/PDF/68/4046.pdf
Montaño-Estrada LP, Fortoul Van der Goes TI, Rendón-Huerta EP. ¿Qué son los inflamosomas? El NLRP3 como,por ejemplo. Rev Fac Med (Méx) 2017; 60 ( 1 ): 42-49.
Khurrum S, Sameen F, Hamzah K, Ahmed E, et al. PodocytespecificNlrp3 inflammasome activation promotes diabetic kidney disease. Kidney Interna 2022; 102 (4): 766-79.https://doi.org/10.1016/j.kint.2022.06.010
Pérez AB. Receptores de reconocimiento de patrones, supapel en la inmunidad innata. Academia Lab 2020. https://www.academia.edu/45171368/receptores_de_reconocimiento_de_patrones_su_papel_en_la_inmunidad_innata
Suárez R, Buelvas N. El inflamasoma: mecanismos deactivación. Invest Clin 2015; 56 (1): 074-099. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0535-51332015000100009&lng=es
Zhang Z, Venditti R, Ran L, et al. Distinct changes in endosomalcomposition promote NLRP3 inflammasomeactivation. Nat Immunol 2023; 24: 3041. https://doi.org/10.1038/s41590-022-01355-3
Park YJ, Dodantenna N, Kim Y, Kim T, et al. MARCH5‐dependentNLRP3 ubiquitination is required for mitochondrialNLRP3‐NEK7 complex formation and NLRP3 inflammasomeactivation. EMBO J 2023; 42 (19). https://doi.org/10.15252/embj.2023113481
Qianqian Di, Xibao Z, Haimei T, Xunwei L, et al. USP22 suppressesthe NLRP3 inflammasome by degrading NLRP3 viaATG5-dependent autophagy. Autophagy 2023; 19 (3): 873-885. https://doi.org/10.1080/15548627.2022.2107314
Dongsheng B, Jiaying D, Xiumin B, Wangjia C, et al. ALDOAmaintains NLRP3 inflammasome activation by controllingAMPK activation. Autophagy 2022; 18: (7): 1673-93.https://doi.org/10.1080/15548627.2021.1997051
Xu T, Yu W, Fang H, et al. Ubiquitination of NLRP3 by gp78/Insig-1 restrains NLRP3 inflammasome activation. CellDeath Differ 2022; 29: 1582-95. https://doi.org/10.1038/s41418-022-00947-8
Ohto U, Kamitsukasa Y, Ishida H, Zhang Z, et al. Structuralbasis for the oligomerization-mediated regulation of NLRP3inflammasome activation. PNAS 2022; 119 (11). https://doi.org/10.1073/pnas.2121353119
Zhan X, Li Q, Xu G, Xiao X, et al. The mechanism of NLRP3inflammasome activation and its pharmacological inhibitors.Front Immunol 2023; 13. https://doi.org/10.3389/fimmu.2022.1109938
Zhang T, Zhao J, Liu T, Cheng W, et al. A novel mechanismfor NLRP3 inflammasome activation. Metabolism Open
2022; 13. https://doi.org/10.1016/j.metop.2022.10016620. Wang L, Ren W, Wu QJ, Liu T, et al. NLRP3 InflammasomeActivation: a therapeutic target for cerebral Ischemia–Reperfusioninjury. Front Mol Neurosci 2022; 15. https://doi.org/10.3389/fnmol.2022.847440
Billingham LK, Stoolman JS, Vasan K, et al. Mitochondrialelectron transport chain is necessary for NLRP3 inflammasomeactivation. Nat Immunol 2022; 23: 692-704. https://doi.org/10.1038/s41590-022-01185-3
Lee KG, Hong BK, Lee S, et al. Nuclear receptor coactivator6 is a critical regulator of NLRP3 inflammasome activationand gouty arthritis. Cell Mol Immunol 2024; 21: 227-44.https://doi.org/10.1038/s41423-023-01121-x
Qiu Y, Huang Y, Chen M, Yang Y, et al. Mitochondrial DNAin NLRP3 inflammasome activation. Int Immunophar 2022;108. https://doi.org/10.1016/j.intimp.2022.108719
Motta V, Soares F, Sun T, Philpott DJ. NOD-like receptors:Versatile cytosolic sentinels. Physiol Rev 2015; 95 (1):149-78. http://dx.doi.org/10.1152/physrev.00009.2014
Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors insterile inflammation and inflammatory diseases. Nat RevImmunol 2020; 20 (2): 95-112. http://dx.doi.org/10.1038/s41577-019-0215-7
De Carvalho RM, Szabo G. Role of the inflammasome inliver disease. Annu Rev Pathol 2022; 17 (1): 345-65. http://dx.doi.org/10.1146/annurev- pathmechdis-032521-102529
Negash AA, Olson RM, Griffin S, Gale M. Modulation ofcalcium signaling pathway by hepatitis C virus core proteinstimulates NLRP3 inflammasome activation. PLoS Pathog2019; 15 (2): e1007593. http://dx.doi.org/10.1371/journal.ppat.1007593
Martínez-Cardona C. Role of the AIM2 inflammasome inthe development of hepatocellular carcinoma. Rua 2019.http://hdl.handle.net/10045/90991
Ding X, Lei Q, Li T, Li L, et al. Hepatitis B core antigencan regulate NLRP3 inflammasome pathway in HepG2cells. J Medical Virol 2019; 91 (8): 1528-36. https://doi.org/10.1002/jmv.25490
Dinarello CA. Overview of the IL‐1 family in innate inflammationand acquired immunity. Immunol Rev 2018; 281(1): 8-27. http://dx.doi.org/10.1111/imr.12621
Tsutsui H, Cai X, Hayashi S. Interleukin-1 family cytokinesin liver diseases. Mediators Inflamm. 2015; 2015: 1-19.http://dx.doi.org/10.1155/2015/630265
Karki R, Man SM, Kanneganti T-D. Inflammasomes andcancer. Cancer Immunol Res 2017; 5 (2): 94-9. https://dx.doi.org/10.1158/2326-6066.cir-16-0269
Moossavi M, Parsamanesh N, Bahrami A, Atkin SL, SahebkarA. Role of the NLRP3 inflammasome in cancer. Mol Cancer2018; 17 (1). http://dx.doi.org/10.1186/s12943-018-0900-3
Yu C, Chen P, Miao L, Di G. The role of the NLRP3 inflammasomeand programmed cell death in acute liver injury.Int J Mol Sci 2023; 24 (4): 3067. http://dx.doi.org/10.3390/ijms24043067
MOLINA LÓPEZ, María Cristina. Regulation of the NLRP3inflammasome in autoinflammatory diseases and its involvementin metabolism. Research Project 2024.
Karasawa T, Komada T, Yamada N, Aizawa E, Mizushina Y,Watanabe S, et al. Cryo-sensitive aggregation triggers NLRP3inflammasome assembly in cryopyrin-associated periodic syndrome.Elife 2022; 11. https://dx.doi.org/10.7554/elife.75166
Sobradillo Ecenarro P. Role of the Inflammasome in Stableand Exacerbated COPD 2022.
Yang W, Ni H, Wang H, Gu H. NLRP3 inflammasome is essentialfor the development of chronic obstructive pulmonarydisease. Int J Clin Exp Pathol 2015; 8 (10): 13209-16.
Hosseinian N, Cho Y, Lockey RF, Kolliputi N. The roleof the NLRP3 inflammasome in pulmonary diseases.Ther Adv Respir Dis 2015; 9 (4): 188-97. http://dx.doi.org/10.1177/1753465815586335
Cui Y, Yu H, Bu Z, Wen L, Yan L, Feng J. Focus on the roleof the NLRP3 inflammasome in multiple sclerosis: Pathogenesis,diagnosis, and therapeutics. Front Mol Neurosci2022; 15. http://dx.doi.org/10.3389/fnmol.2022.894298
Bai H, Zhang Q. Activation of NLRP3 inflammasome andonset of Alzheimer’s disease. Front Immunol 2021; 12.http://dx.doi.org/10.3389/fimmu.2021.701282
Milner MT, Maddugoda M, Götz J, Burgener SS, SchroderK. The NLRP3 inflammasome triggers sterile neuroinflammationand Alzheimer’s disease. Curr Opin Immunol 2021;68: 116–24. http://dx.doi.org/10.1016/j.coi.2020.10.011
Ruano, L. Role of diet in Parkinson´s disease. 2024. DOI:https://hdl.handle.net/10953.1/21421
Haque ME, Akther M, Jakaria M, Kim I-S, Azam S, Choi D-K.Targeting the microglial NLRP3 inflammasome and its rolein Parkinson’s disease. Mov Disord 2020; 35 (1):20-33.http://dx.doi.org/10.1002/mds.27874
Wang S, Yuan Y-H, Chen N-H, Wang H-B. The mechanismsof NLRP3 inflammasome/pyroptosis activation and theirrole in Parkinson’s disease. Int Immunopharmacol 2019; 67:458-64. http://dx.doi.org/10.1016/j.intimp.2018.12.019
Zhenga X, Zhao D, Jin Y, Liu Y, Liu D. Role of the NLRP3inflammasome in gynecological disease. Biomed Pharmacother2023; 166 (115393): 115393. http://dx.doi.org/10.1016/j.biopha.2023.115393
Zhou F, Zhao F, Huang Q, Lin X, Zhang S, Dai Y. NLRP3activated macrophages promote endometrial stromalcells migration in endometriosis. J Reprod Immunol 2022;152 (103649): 103649. DOI: http://dx.doi.org/10.1016/j.jri.2022.103649
Wang D, Weng Y, Zhang Y, Wang R, Wang T, Zhou J, et al.Exposure to hyperandrogen drives ovarian dysfunction andfibrosis by activating the NLRP3 inflammasome in mice. SciTotal Environ 2020; 745 (141049): 141049. http://dx.doi.org/10.1016/j.scitotenv.2020.141049
Deng R, Zhang H-L, Huang J-H, Cai R-Z, Wang Y, Chen Y-H,et al. MAPK1/3 kinase-dependent ULK1 degradation attenuatesmitophagy and promotes breast cancer bonemetastasis. Autophagy 2021; 17 (10): 3011-29. http://dx.doi.org/10.1080/15548627.2020.1850609
Williams BM, Cliff CL, Lee K, Squires PE, Hills CE. The roleof the NLRP3 inflammasome in mediating glomerular andtubular injury in diabetic nephropathy. Front Physiol 2022;13. http://dx.doi.org/10.3389/fphys.2022.907504
Lachowicz-Scroggins ME, Dunican EM, Charbit AR,Raymond W, Looney MR, Peters MC, et al. ExtracellularDNA, neutrophil extracellular traps, and inflammasomeactivation in severe asthma. Am J Respir Crit Care Med2019; 199 (9): 1076-85. http://dx.doi.org/10.1164/rccm.201810-1869oc
Kim RY, Pinkerton JW, Essilfie AT, Robertson AAB, Baines KJ,Brown AC, et al. Role for NLRP3 inflammasome–mediated,IL-1β–dependent responses in severe, steroid-resistantasthma. Am J Respir Crit Care Med 2017; 196 (3): 283-97.http://dx.doi.org/10.1164/rccm.201609-1830oc
Wu Y, Di X, Zhao M, Li H, et al. The role of the NLRP3 inflammasomein chronic inflammation in asthma and chronicobstructive pulmonary disease. Immun Inflamm Dis 2022;10 (12). http://dx.doi.org/10.1002/iid3.750
Rodríguez-Alcázar JF, Ataide MA, Engels G, Schmitt-Mabmunyo C, et al. Charcot–Leyden crystals activate theNLRP3 inflammasome and cause IL-1β inflammation inhuman macrophages. J Immunol 2019; 202 (2): 550-58.http://dx.doi.org/10.4049/jimmunol.1800107
Olivares Reyes J, Rueda A, Sánchez de la Vega. Nuevas tendenciasde investigación en la señalización celular en la erapost-COVID. CINVESTAV 2023. https://repositorio.cinvestav.mx/bitstream/handle/cinvestav/4866/Nuevas%20tendencias%20de%20investigacion.....pdf?sequence=5#page=72
Sun Qing, Guo Wenxiu, Yue Tun, Wang Luet al. Mecanismosy dianas terapéuticas del inflamasoma NLRP3 en lamiocardiopatía diabética. Gac Méd Méx 2023; 159 ( 3 ):261-67. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0016-38132023000300261&lng=es
Chan AHP, Moore MJ, Grant AJ, Lam YTM, et al. Selectiveimmunosuppression targeting the NLRP3 inflammasomemitigates the foreign body response to implanted biomaterialswhile preserving angiogenesis. Adv Healthc Mater2023. https://doi.org/10.1002/adhm.202301571
Xia J, Jiang S, Dong S, Liao Y, et al. The role of post-translationalmodifications in regulation of NLRP3 inflammasomeactivation. Int J Mol Sci 2023; 24 (7): 6126. https://www.mdpi.com/1422-0067/24/7/6126
Liu H, Yang X, Liu G. Regulation of cell proliferation andtransdifferentiation compensates for ventilator‐inducedlung injury mediated by NLRP3 inflammasome activation.Immun Inflamm Dis 2023. http://dx.doi.org/10.1002/iid3.1062
Narros P. Nuevas estrategias farmacológicas dirigidas a lainhibición del inflamasoma NLRP3. Universidad Autónomade Madrid 2022. https://repositorio.uam.es/bitstream/handle/10486/703658/narros_fernandez_paloma.pdf?sequence=1&isAllowed=y
Nouel A, Winter JL, Sepúlveda L. Efectos cardiovascularesde los inhibidores del cotransportador 2 de sodio-glucosa(ISGLT2): los mecanismos del beneficio en pacientescon insuficiencia cardíaca. Rev Chil Cardiol 2022; 41 (3):198-205. http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-85602022000300198&lng=es