medigraphic.com
SPANISH

Medicina Crítica

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • Policies
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 2

<< Back Next >>

Med Crit 2025; 39 (2)

Glycemic variability in the intensive care unit. Topic review and clinical case presentation

Velázquez CA, Morales RJD, Díaz GA, Alonso MD, Cruz LJ, Hidalgo LR
Full text How to cite this article

Language: Spanish
References: 33
Page: 147-153
PDF size: 278.47 Kb.


Key words:

glycemic variability, glucose, metabolism, burn.

ABSTRACT

Introduction: glycemic variability refers to any metric that is characterized by the variation in serum glucose levels from time series monitoring over a specific period or interval. It is one of the measurements available to patients prone to developing alterations in glucose metabolism due to their critical conditions, and a tool in development for routine use within intensive care units. Objective: to describe the importance of glycemic variability as a practical tool applicable to the monitoring of patients in intensive care units, as well as a tool that provides the facility to modify the therapy used. To present the clinical condition of a patient in critical condition with traumatic burn injuries extending to 90% of the body surface. Conclusions: the use of serum glucose measurements that track changes in minimum and maximum values ??over a period of time provides a useful tool for adjusting treatment and preventing complications that can lead to further organ damage. This, in turn, can reduce mortality and complications associated with critical illness. Therefore, monitoring glycemic variability is intended to become a routine practice in intensive care units, facilitating patient monitoring and helping to identify and address metabolic imbalances that require treatment.


REFERENCES

  1. Plummer MP, Bellomo R, Cousins CE, et al. Dysglycaemia in the critically ill and the interaction of chronic and acute glycaemia with mortality. Intensive Care Med. 2014;40(7):973-980. Available in: https://doi.org/10.1007/s00134-014-3287-7

  2. Krinsley JS. Glycemic control, diabetic status, and mortality in a heterogeneous population of critically ill patients before and during the era of intensive glycemic management: six and one-half years experience at a university-affiliated community hospital. Semin Thorac Cardiovasc Surg. 2006;18(4):317-325. Available in: https://doi.org/10.1053/j.semtcvs.2006.12.003

  3. Van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359-1367. Available in: https://doi.org/10.1056/nejmoa011300

  4. NICE-SUGAR Study Investigators; Finfer S, Chittock DR, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283-1297. Available in: https://doi.org/10.1056/nejmoa0810625

  5. Griesdale DE, de Souza RJ, van Dam RM, et al. Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ. 2009;180(8):821-827. Available in: https://doi.org/10.1503/cmaj.090206

  6. Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304-377. Available in: https://doi.org/10.1007/s00134-017-4683-6

  7. Chen Y, Zhang D, Yang H, Wu J, He W. Advances in the study of disulfidptosis in digestive tract tumors. Discov Oncol. 2025;16(1):186. Available in: https://doi.org/10.1016/j.jointm.2022.06.001

  8. Krinsley JS, Schultz MJ, Spronk PE, et al. Mild hypoglycemia is independently associated with increased mortality in the critically ill. Crit Care. 2011;15(4):R173. Available in: https://doi.org/10.1186/cc10322

  9. NICE-SUGAR Study Investigators; Finfer S, Liu B, et al. Hypoglycemia and risk of death in critically ill patients. N Engl J Med. 2012;367(12):1108-1118. Available in: https://doi.org/10.1056/nejmoa1204942

  10. Harp JB, Yancopoulos GD, Gromada J. Glucagon orchestrates stress-induced hyperglycaemia. Diabetes Obes Metab. 2016;18(7):648-653. Available in: https://doi.org/10.1111/dom.12668

  11. Viana MV, Moraes RB, Fabbrin AR, Santos MF, Gerchman F. Avaliacao e tratamento da hiperglicemia em pacientes graves [Assessment and treatment of hyperglycemia in critically ill patients]. Rev Bras Ter Intensiva. 2014;26(1):71-76. Available in: https://doi.org/10.5935/0103-507x.20140011

  12. Mifsud S, Schembri EL, Gruppetta M. Stress-induced hyperglycaemia. Br J Hosp Med (Lond). 2018;79(11):634-639.

  13. Zhang ZY, Miao LF, Qian LL, et al. Molecular mechanisms of glucose fluctuations on diabetic complications. Front Endocrinol (Lausanne). 2019;10:640. Available in: https://doi.org/10.3389/fendo.2019.00640

  14. McDonnell ME, Umpierrez GE. Insulin therapy for the management of hyperglycemia in hospitalized patients. Endocrinol Metab Clin North Am. 2012;41(1):175-201. Available in: https://doi.org/10.1016/j.ecl.2012.01.001

  15. Wold LE, Ceylan-Isik AF, Ren J. Oxidative stress and stress signaling: menace of diabetic cardiomyopathy. Acta Pharmacol Sin. 2005;26(8):908-917. Available in: https://doi.org/10.1111/j.1745-7254.2005.00146.x

  16. Monnier L, Mas E, Ginet C, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295(14):1681-1687. Available in: https://doi.org/10.1001/jama.295.14.1681

  17. Kohnert KD, Freyse EJ, Salzsieder E. Glycaemic variability and pancreatic β-cell dysfunction. Curr Diabetes Rev. 2012;8(5):345-354.

  18. Li K, Song WJ, Wu X, et al. Associations of serum glucagon levels with glycemic variability in type 1 diabetes with different disease durations. Endocrine. 2018;61(3):473-481. Available in: https://doi.org/10.1007/s12020-018-1641-1

  19. Tomita T. Apoptosis in pancreatic β-islet cells in type 2 diabetes. Bosn J Basic Med Sci. 2016;16(3):162-179. Available in: https://doi.org/10.17305/bjbms.2016.919

  20. Saito S, Teshima Y, Fukui A, et al. Glucose fluctuations increase the incidence of atrial fibrillation in diabetic rats. Cardiovasc Res. 2014;104(1):5-14. Available in: https://doi.org/10.1093/cvr/cvu176

  21. Sun J, Xu Y, Sun S, Sun Y, Wang X. Intermittent high glucose enhances cell proliferation and VEGF expression in retinal endothelial cells: the role of mitochondrial reactive oxygen species. Mol Cell Biochem. 2010;343(1-2):27-35. Available in: https://doi.org/10.1007/s11010-010-0495-5

  22. Montesanto A, Crocco P, Dato S, et al. Uncoupling protein 4 (UCP4) gene variability in neurodegenerative disorders: further evidence of association in Frontotemporal dementia. Aging (Albany NY). 2018;10(11):3283-3293. Available in: https://doi.org/10.18632/aging.101632

  23. Dossett LA, Cao H, Mowery NT, et al. Blood glucose variability is associated with mortality in the surgical intensive care unit. Am Surg. 2008;74(8):679-685; discussion 685. Available in: https://doi.org/10.1177/000313480807400802

  24. Hermanides J, Vriesendorp TM, Bosman RJ, Zandstra DF, Hoekstra JB, Devries JH. Glucose variability is associated with intensive care unit mortality. Crit Care Med. 2010;38(3):838-842. Available in: https://doi.org/10.1097/ccm.0b013e3181cc4be9

  25. Meynaar IA, Eslami S, Abu-Hanna A, van der Voort P, de Lange DW, de Keizer N. Blood glucose amplitude variability as predictor for mortality in surgical and medical intensive care unit patients: a multicenter cohort study. J Crit Care. 2012;27(2):119-124. Available in: https://doi.org/10.1016/j.jcrc.2011.11.004

  26. Eslami S, Taherzadeh Z, Schultz MJ, Abu-Hanna A. Glucose variability measures and their effect on mortality: a systematic review. Intensive Care Med. 2011;37(4):583-593. Available in: https://doi.org/10.1007/s00134-010-2129-5

  27. Kovatchev B, Cobelli C. Glucose variability: timing, risk analysis, and relationship to hypoglycemia in diabetes. Diabetes Care. 2016;39(4):502-510. Available in: https://doi.org/10.2337/dc15-2035

  28. Lanspa MJ, Krinsley JS, Hersh AM, et al. Percentage of time in range 70 to 139 mg/dL is associated with reduced mortality among critically ill patients receiving IV insulin infusion. Chest. 2019;156(5):878-886. Available in: https://doi.org/10.1016/j.chest.2019.05.016

  29. Jeschke MG. Clinical review: Glucose control in severely burned patients - current best practice. Crit Care. 2013;17(4):232.

  30. Jeschke MG, Chinkes DL, Finnerty CC, et al. Pathophysiologic response to severe burn injury. Ann Surg. 2008;248(3):387-401. Available in: https://doi.org/10.1097/sla.0b013e3181856241

  31. Gore DC, Chinkes D, Heggers J, Herndon DN, Wolf SE, Desai M. Association of hyperglycemia with increased mortality after severe burn injury. J Trauma. 2001;51(3):540-544. Available in: https://doi.org/10.1097/00005373-200109000-00021

  32. Gore DC, Chinkes DL, Hart DW, Wolf SE, Herndon DN, Sanford AP. Hyperglycemia exacerbates muscle protein catabolism in burn-injured patients. Crit Care Med. 2002;30(11):2438-2442. Available in: https://doi.org/10.1097/00003246-200211000-00006

  33. Wilmore DW, Long JM, Mason AD Jr, Skreen RW, Pruitt BA Jr. Catecholamines: mediator of the hypermetabolic response to thermal injury. Ann Surg. 1974;180(4):653-669. Available in: https://doi.org/10.1097/00000658-197410000-00031




Figure 1
Figure 2
Table 1

2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Med Crit. 2025;39