2025, Number 5
<< Back Next >>
Rev Fac Med UNAM 2025; 68 (5)
Endocannabinoids and Orexins in the Modulation of the Sleep-Wake Cycle and Substance Abuse
Ostos-Valverde A, Daval-Marín-Lozano V, Gómez-Villatoro JP, Méndez-Díaz M, Herrera-Solís A, Ruiz-Contreras AE, Prospéro-García ÓE
Language: Spanish
References: 31
Page: 8-18
PDF size: 419.16 Kb.
ABSTRACT
Wakefulness and sleep are essential physiological states
that alternate cyclically in humans and other species. Sleep,
characterized by a reversible loss of consciousness and modulation
of autonomic functions, is organized into distinct
phases: non-rapid eye movement sleep (NREM), subdivided
into N1, N2, and N3, and rapid eye movement sleep (REM).
These phases play critical roles in metabolic restoration,
information processing, and the consolidation of different
types of memory. Wakefulness, in contrast, is defined as an
active state of consciousness oriented toward environmental
interaction, sustained by the coordinated activity of multiple
neurotransmitters.
The sleep–wake cycle is explained through the two-process
model: a circadian component (process C), regulated
by the suprachiasmatic nucleus and synchronized with the
light–dark cycle, and a homeostatic component (process S),
dependent on the accumulation of substances such as adenosine
and cortistatin during wakefulness. These processes
interact with neurochemical systems that include acetylcholine,
dopamine, serotonin, norepinephrine, histamine,
hypocretins/orexins, and neuropeptides such as VIP, CCK, and
IL-1β. Their precise regulation is indispensable for the maintenance
of physiological and cognitive health, whereas their
dysfunction is associated with sleep disorders and increased
vulnerability to substance addiction.
This work represents the first part of an integrative analysis
of the neurobiological systems that link sleep regulation with
vulnerability to drug use. A second publication will address
the role of the endocannabinoid and orexin systems in the
regulation of diverse physiological functions, including the
sleep–wake cycle, as well as their contribution to the development
of sleep disorders and the mechanisms underlying
substance abuse.
REFERENCES
Baranwal N, Yu PK, Siegel NS. Sleep physiology, pathophysiology,and sleep hygiene. 2023. Disponible en: https://doi.org/10.1016/j.pcad.2023.02.005
Aserinsky E, Kleitman N. Regularly occurring periods ofeye motility, and concomitant phenomena, during sleep.Science. 1953;118:273-4.
Sleep: definition, patterns, deprivation, & theories [Internet].Britannica; 2025. Disponible en: https://www.britannica.com/science/sleep
Dement WC, Kleitman N. The relation of eye movementsduring sleep to dream activity: an objective method for thestudy of dreaming. J Exp Psychol. 1957;53(5):339-46.
Carskadon MA, Dement WC. Normal human sleep. In:Kryger MH, Roth T, Dement WC, editors. Principles andpractice of sleep medicine. 5th ed. Philadelphia: Elsevier;2011. p. 16-26.
Patel AK, Reddy V, Shumway KR, Araujo JF. Physiology,Sleep Stages [Internet]. Treasure Island (FL): StatPearlsPublishing; 2025. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK526132/
Barbato G. REM sleep: an unknown indicator of sleepquality [Internet]. 2021. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34948586/
Poe GR, Walsh CM, Bjorness TE. Cognitive neuroscienceof sleep. Prog Brain Res. 2010;185:1-19. Disponible en:https://pmc.ncbi.nlm.nih.gov/articles/PMC4180265/
Luppi PH, Fort P. Sleep-wake physiology. Handb ClinNeurol. 2019;160:359-71. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31277860/
Cai DJ, Mednick SA, Harrison EM, Kanady JC, MednickSC. REM, not incubation, improves creativity bypriming associative networks. Proc Natl Acad Sci U S A.2009;106(25):10130-4. Disponible en: https://pubmed.ncbi.nlm.nih.gov/19506253/
Vanini G, Torterolo P. Sleep-wake neurobiology. Adv ExpMed Biol. 2021;1297:3-22. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33537937/
Borbély AA. The S-deficiency hypothesis of depression andthe two-process model of sleep regulation. Pharmacopsychiatry.1987;20(1):23-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/3823126/
Klein DC, Moore RY. Pineal N-acetyltransferase and hydroxyindole-O-methyltransferase: control by the retinohypothalamictract and the suprachiasmatic nucleus. BrainRes. 1979;174(2):245-62. Disponible en: https://pubmed.ncbi.nlm.nih.gov/487129/
Provencio I, Rodriguez IR, Jiang GS, Hayes WP, MoreiraEF, Rollag MD. A novel human opsin in the inner retina.J Neurosci. 2000;20(2):600-5. Disponible en: https://pubmed.ncbi.nlm.nih.gov/10632589/
Schwartz MD, Kilduff TS. The neurobiology of sleep andwakefulness. Curr Top Behav Neurosci. 2015;25:1-36. Disponibleen: https://pubmed.ncbi.nlm.nih.gov/26600100/
Mortimer T, Smith JG, Muñoz-Cánoves P, Aznar BenitahS. Circadian clock communication during homeostasis andageing. Nat Rev Mol Cell Biol. 2025;26:45-60. Disponibleen: https://www.nature.com/articles/s41580-024-00802-3
Reddy S, Reddy V, Sharma S. Physiology, CircadianRhythm [Internet]. Treasure Island (FL): StatPearls Publishing;2025. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK519507/
Porkka-Heiskanen T, Strecker RE, McCarley RW. Brainsite-specificity of extracellular adenosine concentrationchanges during sleep deprivation and spontaneous sleep: anin vivo microdialysis study. Neuroscience. 2000;99(3):507-17.Disponible en: https://pubmed.ncbi.nlm.nih.gov/11029542/
Vazquez J, Baghdoyan HA. Basal forebrain acetylcholinerelease during REM sleep is significantly greater thanduring waking. Am J Physiol Regul Integr Comp Physiol.
2001;280(3):R598-601. Disponible en: https://pubmed.ncbi.nlm.nih.gov/11208592/20. Jacobson LH, Hoyer D, de Lecea L. Hypocretins (orexins):the ultimate translational neuropeptides. Nat Rev DrugDiscov. 2022;21(9):605-25. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35043499/
de Lecea L, del Rio JA, Criado JR, Alcántara S, MoralesM, Danielson PE, et al. Cortistatin is expressedin a distinct subset of cortical interneurons. J Neurosci.1997;17(15):5868-80. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9221784/
Bourgin P, Fabre V, Huitron-Resendiz S, Henriksen SJ,Prospéro-García O, Criado JR, et al. Cortistatin promotesand negatively correlates with slow-wave sleep. Eur J Neurosci.2007;26(3):729-38. Disponible en: https://pubmed.ncbi.nlm.nih.gov/17686045/
Méndez-Díaz M, Guevara-Martínez M, Alquicira CR,Guzmán-Vásquez K, Prospéro-García O. Cortistatin, amodulatory peptide of sleep and memory, induces analgesiain rats. Neuropeptides. 2004;38(1):23-30. Disponibleen: https://pubmed.ncbi.nlm.nih.gov/14700741/
Méndez-Díaz M, Irwin LN, Gómez-Chavarín M,Jiménez-Anguiano A, Cabeza R, Murillo-Rodríguez E, etal. Cortistatin modulates memory evocation in rats. Peptides.2005;26(1):1-8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/15659290/
Prospéro-García O, Méndez-Díaz M. The role of neuropeptidesin sleep modulation. Drug News Perspect.2004;17(8):518-22.
Chong PLH, Garic D, Shen MD, Lundgaard I, SchwichtenbergAJ. Sleep, cerebrospinal f luid, and theglymphatic system: a systematic review. Sleep Med Rev.2022;62:101589. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34902819/
Watson CJ, Baghdoyan HA, Lydic R. Neuropharmacologyof sleep and wakefulness. Sleep Med Clin. 2010;5(4):513-
Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC3026477/28. Ostos-Valverde A, Herrera-Solís A, Ruiz-Contreras AE,Méndez-Díaz M, Prospéro-García OE. Sleep debt-inducedanxiety and addiction to substances of abuse: a narrativereview. Addict Neurosci. 2024;3:100057. Disponible en:https://pubmed.ncbi.nlm.nih.gov/39260592/
Manzanares J, Cabañero D, Puente N, García-GutiérrezMS, Grandes P, Maldonado R, et al. Role of the endocannabinoidsystem in drug addiction. Neuropharmacology.2018;151:252-74. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30217570/
McGregor R, Thannickal TC, Siegel JM. Pleasure, addiction,and hypocretin (orexin). Brain Res. 2021;1750:147146. Disponibleen: https://pubmed.ncbi.nlm.nih.gov/34225941/
Valentino RJ, Volkow ND. Drugs, sleep, and the addictedbrain. Nat Rev Neurosci. 2019;20(7):404-17. Disponibleen: https://pubmed.ncbi.nlm.nih.gov/31311031/