medigraphic.com
SPANISH

Revista de la Facultad de Medicina UNAM

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 5

<< Back Next >>

Rev Fac Med UNAM 2025; 68 (5)

Endocannabinoids and Orexins in the Modulation of the Sleep-Wake Cycle and Substance Abuse

Ostos-Valverde A, Daval-Marín-Lozano V, Gómez-Villatoro JP, Méndez-Díaz M, Herrera-Solís A, Ruiz-Contreras AE, Prospéro-García ÓE
Full text How to cite this article

Language: Spanish
References: 31
Page: 8-18
PDF size: 419.16 Kb.


Key words:

Sleep, NREM, REM, wakefulness, circadian process, homeostatic process.

ABSTRACT

Wakefulness and sleep are essential physiological states that alternate cyclically in humans and other species. Sleep, characterized by a reversible loss of consciousness and modulation of autonomic functions, is organized into distinct phases: non-rapid eye movement sleep (NREM), subdivided into N1, N2, and N3, and rapid eye movement sleep (REM). These phases play critical roles in metabolic restoration, information processing, and the consolidation of different types of memory. Wakefulness, in contrast, is defined as an active state of consciousness oriented toward environmental interaction, sustained by the coordinated activity of multiple neurotransmitters.
The sleep–wake cycle is explained through the two-process model: a circadian component (process C), regulated by the suprachiasmatic nucleus and synchronized with the light–dark cycle, and a homeostatic component (process S), dependent on the accumulation of substances such as adenosine and cortistatin during wakefulness. These processes interact with neurochemical systems that include acetylcholine, dopamine, serotonin, norepinephrine, histamine, hypocretins/orexins, and neuropeptides such as VIP, CCK, and IL-1β. Their precise regulation is indispensable for the maintenance of physiological and cognitive health, whereas their dysfunction is associated with sleep disorders and increased vulnerability to substance addiction.
This work represents the first part of an integrative analysis of the neurobiological systems that link sleep regulation with vulnerability to drug use. A second publication will address the role of the endocannabinoid and orexin systems in the regulation of diverse physiological functions, including the sleep–wake cycle, as well as their contribution to the development of sleep disorders and the mechanisms underlying substance abuse.


REFERENCES

  1. Baranwal N, Yu PK, Siegel NS. Sleep physiology, pathophysiology,and sleep hygiene. 2023. Disponible en: https://doi.org/10.1016/j.pcad.2023.02.005

  2. Aserinsky E, Kleitman N. Regularly occurring periods ofeye motility, and concomitant phenomena, during sleep.Science. 1953;118:273-4.

  3. Sleep: definition, patterns, deprivation, & theories [Internet].Britannica; 2025. Disponible en: https://www.britannica.com/science/sleep

  4. Dement WC, Kleitman N. The relation of eye movementsduring sleep to dream activity: an objective method for thestudy of dreaming. J Exp Psychol. 1957;53(5):339-46.

  5. Carskadon MA, Dement WC. Normal human sleep. In:Kryger MH, Roth T, Dement WC, editors. Principles andpractice of sleep medicine. 5th ed. Philadelphia: Elsevier;2011. p. 16-26.

  6. Patel AK, Reddy V, Shumway KR, Araujo JF. Physiology,Sleep Stages [Internet]. Treasure Island (FL): StatPearlsPublishing; 2025. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK526132/

  7. Barbato G. REM sleep: an unknown indicator of sleepquality [Internet]. 2021. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34948586/

  8. Poe GR, Walsh CM, Bjorness TE. Cognitive neuroscienceof sleep. Prog Brain Res. 2010;185:1-19. Disponible en:https://pmc.ncbi.nlm.nih.gov/articles/PMC4180265/

  9. Luppi PH, Fort P. Sleep-wake physiology. Handb ClinNeurol. 2019;160:359-71. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31277860/

  10. Cai DJ, Mednick SA, Harrison EM, Kanady JC, MednickSC. REM, not incubation, improves creativity bypriming associative networks. Proc Natl Acad Sci U S A.2009;106(25):10130-4. Disponible en: https://pubmed.ncbi.nlm.nih.gov/19506253/

  11. Vanini G, Torterolo P. Sleep-wake neurobiology. Adv ExpMed Biol. 2021;1297:3-22. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33537937/

  12. Borbély AA. The S-deficiency hypothesis of depression andthe two-process model of sleep regulation. Pharmacopsychiatry.1987;20(1):23-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/3823126/

  13. Klein DC, Moore RY. Pineal N-acetyltransferase and hydroxyindole-O-methyltransferase: control by the retinohypothalamictract and the suprachiasmatic nucleus. BrainRes. 1979;174(2):245-62. Disponible en: https://pubmed.ncbi.nlm.nih.gov/487129/

  14. Provencio I, Rodriguez IR, Jiang GS, Hayes WP, MoreiraEF, Rollag MD. A novel human opsin in the inner retina.J Neurosci. 2000;20(2):600-5. Disponible en: https://pubmed.ncbi.nlm.nih.gov/10632589/

  15. Schwartz MD, Kilduff TS. The neurobiology of sleep andwakefulness. Curr Top Behav Neurosci. 2015;25:1-36. Disponibleen: https://pubmed.ncbi.nlm.nih.gov/26600100/

  16. Mortimer T, Smith JG, Muñoz-Cánoves P, Aznar BenitahS. Circadian clock communication during homeostasis andageing. Nat Rev Mol Cell Biol. 2025;26:45-60. Disponibleen: https://www.nature.com/articles/s41580-024-00802-3

  17. Reddy S, Reddy V, Sharma S. Physiology, CircadianRhythm [Internet]. Treasure Island (FL): StatPearls Publishing;2025. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK519507/

  18. Porkka-Heiskanen T, Strecker RE, McCarley RW. Brainsite-specificity of extracellular adenosine concentrationchanges during sleep deprivation and spontaneous sleep: anin vivo microdialysis study. Neuroscience. 2000;99(3):507-17.Disponible en: https://pubmed.ncbi.nlm.nih.gov/11029542/

  19. Vazquez J, Baghdoyan HA. Basal forebrain acetylcholinerelease during REM sleep is significantly greater thanduring waking. Am J Physiol Regul Integr Comp Physiol.

  20. 2001;280(3):R598-601. Disponible en: https://pubmed.ncbi.nlm.nih.gov/11208592/20. Jacobson LH, Hoyer D, de Lecea L. Hypocretins (orexins):the ultimate translational neuropeptides. Nat Rev DrugDiscov. 2022;21(9):605-25. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35043499/

  21. de Lecea L, del Rio JA, Criado JR, Alcántara S, MoralesM, Danielson PE, et al. Cortistatin is expressedin a distinct subset of cortical interneurons. J Neurosci.1997;17(15):5868-80. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9221784/

  22. Bourgin P, Fabre V, Huitron-Resendiz S, Henriksen SJ,Prospéro-García O, Criado JR, et al. Cortistatin promotesand negatively correlates with slow-wave sleep. Eur J Neurosci.2007;26(3):729-38. Disponible en: https://pubmed.ncbi.nlm.nih.gov/17686045/

  23. Méndez-Díaz M, Guevara-Martínez M, Alquicira CR,Guzmán-Vásquez K, Prospéro-García O. Cortistatin, amodulatory peptide of sleep and memory, induces analgesiain rats. Neuropeptides. 2004;38(1):23-30. Disponibleen: https://pubmed.ncbi.nlm.nih.gov/14700741/

  24. Méndez-Díaz M, Irwin LN, Gómez-Chavarín M,Jiménez-Anguiano A, Cabeza R, Murillo-Rodríguez E, etal. Cortistatin modulates memory evocation in rats. Peptides.2005;26(1):1-8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/15659290/

  25. Prospéro-García O, Méndez-Díaz M. The role of neuropeptidesin sleep modulation. Drug News Perspect.2004;17(8):518-22.

  26. Chong PLH, Garic D, Shen MD, Lundgaard I, SchwichtenbergAJ. Sleep, cerebrospinal f luid, and theglymphatic system: a systematic review. Sleep Med Rev.2022;62:101589. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34902819/

  27. Watson CJ, Baghdoyan HA, Lydic R. Neuropharmacologyof sleep and wakefulness. Sleep Med Clin. 2010;5(4):513-

  28. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC3026477/28. Ostos-Valverde A, Herrera-Solís A, Ruiz-Contreras AE,Méndez-Díaz M, Prospéro-García OE. Sleep debt-inducedanxiety and addiction to substances of abuse: a narrativereview. Addict Neurosci. 2024;3:100057. Disponible en:https://pubmed.ncbi.nlm.nih.gov/39260592/

  29. Manzanares J, Cabañero D, Puente N, García-GutiérrezMS, Grandes P, Maldonado R, et al. Role of the endocannabinoidsystem in drug addiction. Neuropharmacology.2018;151:252-74. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30217570/

  30. McGregor R, Thannickal TC, Siegel JM. Pleasure, addiction,and hypocretin (orexin). Brain Res. 2021;1750:147146. Disponibleen: https://pubmed.ncbi.nlm.nih.gov/34225941/

  31. Valentino RJ, Volkow ND. Drugs, sleep, and the addictedbrain. Nat Rev Neurosci. 2019;20(7):404-17. Disponibleen: https://pubmed.ncbi.nlm.nih.gov/31311031/




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Fac Med UNAM . 2025;68