medigraphic.com
SPANISH

Revista de Educación Bioquímica

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 3

<< Back Next >>

Rev Educ Bioquimica 2025; 44 (3)

La participación del calcio y las proteínas en la inducción de aneugénesis (chromosome missegregation) por la exposición a compuestos volátiles

Coutiño-Rodríguez ERM, Cortinas NC, Legator M, Arroyo-Helguera O
Full text How to cite this article

Language: Spanish
References: 50
Page: 150-168
PDF size: 662.27 Kb.


Key words:

aneugenesis, calcium, proteins, thiol and disulfide groups, volatile compounds.

ABSTRACT

In the 1970s, the incidence of cancer increased and part of its etiology was associated with genetic anomalies linked to exposure to chemical compounds that are a product of energy, chemical, or agrochemical industrialization. This triggered interest in studying genetic alterations of chromosomal type or mutations in which deoxyribonucleic acid (DNA) was the main target of mutagens and carcinogens, both in genetic and environmental toxicology studies. However, non-mutagenic compounds incapable of inducing mutations in microbial systems, like the Ames test, increased anaphase anomalies (AA) in eukaryotes, especially multipolar spindles and delayed chromosomes behaving as risk compounds for the induction of aneuploidies. Particularly, this refers to membrane-depolarizing volatile substances that cause Ca2+ movements related to the structural and functional activity of proteins, including those of the mitotic spindle and chromosomal proteins, which induce c-mitosis and micronuclei. Therefore, the proteins involved in the formation of the mitotic spindle from the plasma membrane play a very important role in the genotoxic induction of genetic alterations associated with aneugenesis. The objective of this review is to gather data that corroborates the involvement of proteins, the membrane, and Ca2+ in the induction of AA, and how they are linked to multipolar spindles, the molecular weight, and melting point of many volatile chemical compounds (pesticides) which are genotoxic, aneugenic, cancer-inducing, and are associated with environmental carcinogenesis.


REFERENCES

  1. Pacchierotti F, Masumura K, Eastmond DA,Elhajouji A, Froetschl R, Kirsch-Volders M, et al.Chemically induced aneuploidy in germ cells. Part II of the report of the 2017 IWGT workgroup onassessing the risk of aneugens for carcinogenesisand hereditary diseases. Mutat Res Genet ToxicolEnviron Mutagen. 2019 Dec 1;848:403023.

  2. Coutiño E. Analysis of anaphase in cell culture:an adequate test system for the distinction betweencompounds which selectively alter the chromosomestructure or the mitotic apparatus. Environ HealthPerspect [Internet]. 1979 Aug [cited 2025 May 30];31:131. Available from:https://pmc.ncbi.nlm.nih.gov/articles/PMC1637635/

  3. Coutiño E. Análisis de anafases en células encultivo: un sistema adecuado para la distinción decompuestos que alteran selectivamente la estructuracromosómica o el aparato mitótico [Tesis demaestría]. UNAM; 1979.

  4. Von Ledebur M, Schmid W. The micronucleustest methodological aspects. Mutation Research/Fundamental and Molecular Mechanisms ofMutagenesis. 1973 Jul 1;19(1):109–17.

  5. Nichols W, Moorhead P, Brewer G, Adler I,Conger A, German J, et al. Chromosomemethodologies in mutation testing. Report of the AdHoc Committee of The Environmental MutagenSociety and The Institute for Medical Research.Toxicol Appl Pharmacol. 1972;22(269).

  6. Ames BN, Lee FD, Durston WE. An ImprovedBacterial Test System for the Detection andClassification of Mutagens and Carcinogens.Proceedings of the National Academy of Sciences[Internet]. 1973 Mar 1 [cited 2025 May30];70(3):782–6. Available from:https://www.pnas.org/doi/abs/10.1073/pnas.70.3.782

  7. Ames BN, McCann J, Yamasaki E. Methods fordetecting carcinogens and mutagens with the salmonella/mammalian-microsome mutagenicity test.Mutation Research/Environmental Mutage-nesisand Related Subjects. 1975 Dec 1;31(6):347–63

  8. Legator M, Pullin T, Connor T. The isolationand detection of mutagenic substances in body fluidand tissues of animals and body fluid of humansubjects. In: Kilbey В, Legator M, Nichols W,Ramal C, editors. Handbook of mutagenicity testprocedures. Elsevier Scientific Publishing Co.;1977. p. 149–59.

  9. More SJ, Bampidis V, Bragard C, HalldorssonTI, Hernández-Jerez AF, Hougaard Bennekou S, etal. Guidance on aneugenicity assessment. EFSAJournal. 2021 Aug 1;19(8).

  10. Coulston F, Henry Wills J. Mutagenic,carcinogenic and teratogenic effects of pollutants inrespect to man. Pure and Applied Chemistry[Internet]. 1975 Jan 1 [cited 2025 May 30];42(1–2):209–22. Available from:https://www.degruyterbrill.com/document/doi/10.1351/pac197542010209/html

  11. Hay A. Identifying carcinogens. Nature[Internet]. 1977 Oct 1 [cited 2025 May30];269(5628):468–70. Available from:https://www.nature.com/articles/269468a0

  12. Buffler P, M. Aase J. Genetic risks andenvironmental surveillance: epidemiologicalaspects of monitoring industrial populations forenvironmental mutag. Journal of OccupationalMedicine [Internet]. 1982 [cited 2025 May30];24(4):305–14. Available from:https://www.jstor.org/stable/45014196

  13. Infante P. Epidemiological studies inoccupational exposure to waste anesthetics, gasesand vapors. In: Métodos para la detección demutágenos y carcinógenos químicos ambientalesInstituto de Investigaciones Biomédicas. Institutode Investigaciones Biomédicas, UNAM; 1979.

  14. Östergren G. Colchicine mitosis, chromosomeconcentration, narcosis and protein chain folding.Hereditas [Internet]. 1944 Mar 1 [cited 2025 May30];30(3):429–67. Available from:https://onlinelibrary.wiley.com/doi/full/10.1111/j.1601-5223.1944.tb02739.x

  15. Levan A. The effect of colchicine on rootmitoses in Alliurn. Hereditas. 1938;(24):471–86.

  16. Seeman P. The membrane actions of anestheticsand tranquilizers. Pharmacol Rev [Internet]. 1972Dec 1 [cited 2025 May 30];24(4):583–655.Available from: https://pharmrev.aspetjournals.org/action/showFullText?pii=S0031699725069315

  17. Almanza A, Carlesso A, Chintha C, CreedicanS, Doultsinos D, Leuzzi B, et al. Endoplasmicreticulum stress signalling–from basic mechanismsto clinical applications. FEBS J [Internet]. 2018 Jan1 [cited 2025 May 30];286(2):241. Available from:https://pmc.ncbi.nlm.nih.gov/articles/PMC7379631 /

  18. Mayati A, Levoin N, Paris H, N’Diaye M,Courtois A, Uriac P, et al. Induction of intracellularcalcium concentration by environmentalbenzo(a)pyrene involves a β2-adrenergicreceptor/adenylyl cyclase/Epac-1/inositol 1,4,5-trisphosphate pathway in endothelial cells. J BiolChem [Internet]. 2012 Feb 3 [cited 2025 May30];287(6):4041–52. Available from:https://pubmed.ncbi.nlm.nih.gov/22167199/

  19. Ghibelli L, Cerella C, Diederich M. The dualrole of calcium as messenger and stressor in celldamage, death, and survival. Int J Cell Biol[Internet]. 2010 [cited 2025 May 30];2010.Available from:https://pubmed.ncbi.nlm.nih.gov/20300548/

  20. Coutiño E. Sulfhidrilos como centros nucleofílicosy su participación en los procesos mutagénicos.Curso Internacional sobre Mutágenos yCarcinógenos Ambientales y Métodos para sudetección. 1979.

  21. Coutiño E. Participación del Ca2+ en la relaciónde cisteína disulfuro de las proteínas en laproducción de daño genético. Xalapa, Veracruz: VIIJornadas de la Asociación de Médicos de MexicanaA.C.; 1994.

  22. Mazia D, Prescott DM. Nuclear function andmitosis. Science (1979) [Internet]. 1954 [cited 2025May 30];120(3108):120–2. Available from:https://pubmed.ncbi.nlm.nih.gov/13178668/

  23. Kuriyama R, Sakai H. Role of tubulin-SHgroups in polymerization to microtubules.Functional-SH groups in tubulin for polymerization.J Biochem [Internet]. 1974 [cited 2025 May30];76(3):651–4. Available from:https://pubmed.ncbi.nlm.nih.gov/4474165/

  24. Marcum JM, Dedman JR, Brinkley BR, MeansAR. Control of microtubule assembly-disassemblyby calcium-dependent regulator protein. Proc NatlAcad Sci U S A. 1978;75(8):3771–5.

  25. Brinkley BR, Fuller GM, Highfield DP.Cytoplasmic microtubules in normal andtransformed cells in culture: analysis by tubulinantibody immunofluorescence. Proceedings of theNational Academy of Sciences [Internet]. 1975 Dec1 [cited 2025 May 30];72(12):4981–5. Availablefrom: https://www.pnas.org/doi/abs/10.1073/pnas.72.12.4981

  26. Rifkin DB. Cross-talk among proteases andmatrix in the control of growth factor action.Fibrinolysis and Proteolysis. 1997 Jan 1;11(1):3–9.

  27. Rifkin DB, Mazzieri R, Munger JS, Noguera I,Sung J. Proteolytic control of growth factoravailability. Acta Pathologica, Microbiologica, etImmunologica Scandinavica [Internet]. 1999 Mar 1[cited 2025 May 30];107(1):80–5. Available from:https://onlinelibrary.wiley.com/doi/full/10.1111/j.1699-0463.1999.tb01529.x

  28. Brzozowski JS, Skelding KA. The multifunctionalcalcium/calmodulin stimulated proteinkinase (CaMK) family: Emerging targets for anticancertherapeutic intervention. Pharmaceuticals[Internet]. 2019 Mar 1 [cited 2025 May 30];12(1):8.Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC6469190/

  29. Rodríguez-Gómez A de J, Frias-Vázquez S. Lamitosis y su regulación. Acta Pediátrica de México[Internet]. 2014 [cited 2025 May 30];35(1):55–86.Available from: www.actapediatricademexico.org

  30. Skelding KA, Rostas JAP, Verrills NM.Controlling the cell cycle: The role ofcalcium/calmodulin-stimulated protein kinases Iand II. Cell Cycle [Internet]. 2011 Feb 15 [cited2025 May 30];10(4):631–9. Available from:https://www.tandfonline.com/doi/abs/10.4161/cc.10.4.14798

  31. Coutiño E, Ávila L, Arroyo O. Lasnanopartículas de plata: mecanismos de entrada,toxicidad y estrés oxidativo. Revista de EducaciónBioquímica [Internet]. 2017 [cited 2024 Apr4];36(2):39–54. Available from:https://www.medigraphic.com/pdfs/revedubio/reb-2017/reb172b.pdf

  32. Rojas-Espinosa O, Arce-Paredes P. Fagocitosis:mecanismos y consecuencias. Primera parte.Bioquimica. 2003;35:55–86.

  33. Kornuta N, Bagley E, Nedopitanskaya N.Genotoxic effects of pesticides. J Environ PatholToxicol Oncol. 1996;15(2–4):75–8.

  34. Saleh MA. Mutagenic and carcinogenic effectsof pesticides. Journal of Environmental Science &Health Part B [Internet]. 1980 Jan 1 [cited 2025 May30];15(6):907–27. Available from:https://www.tandfonline.com/doi/abs/10.1080/03601238009372222

  35. Rakitsky VN, Turusov VS. The mutagenic andcarcinogenic activity of chemical compounds.Vestn Ross Akad Med Nauk. 2005;(3):7–9.

  36. Ashby J, Tennant RW. Chemical structure,Salmonella mutagenicity and extent of carcinogenicityas indicators of genotoxic carcinogenesisamong 222 chemicals tested in rodents by the U.S.NCI/NTP. Mutation Research/Genetic Toxicology.1988 Jan 1;204(1):17–115.

  37. Verheyen GR, Van Deun K, Van Miert S.Testing the mutagenicity potential of chemicals. JGenet Genome Res. 2017 Dec 31;4(1).

  38. Gold LS, Slone TH, Stern BR, Bernstein L.Comparison of target organs of carcinogenicity formutagenic and non-mutagenic chemicals. MutationResearch/Fundamental and Molecular Mechanismsof Mutagenesis. 1993 Mar 1;286(1):75–100.

  39. Kirsch-Volders M, Sofuni T, Aardema M,Albertini S, Eastmond D, Fenech M, et al. Reportfrom the In Vitro Micronucleus Assay WorkingGroup. Environ Mol Mutagen. 2000;35(3):167–72.

  40. Uceda AB, Mariño L, Casasnovas R, AdroverM. An overview on glycation: molecularmechanisms, impact on proteins, pathogenesis, andinhibition. Biophys Rev [Internet]. 2024 Apr 12[cited 2025 May 30];16(2):189–218. Availablefrom: https://link.springer.com/article/10.1007/s12551-024-01188-4

  41. Chatterjee N, Walker GC. Mechanisms of DNAdamage, repair, and mutagenesis. Environ MolMutagen [Internet]. 2017 Jun 1 [cited 2025 May30];58(5):235–63. Available from:https://pubmed.ncbi.nlm.nih.gov/28485537/

  42. Galdieri L, Zhang T, Rogerson D, Lleshi R,Vancura A. Protein acetylation and acetyl coenzymea metabolism in budding yeast. Eukaryot Cell[Internet]. 2014 Dec 1 [cited 2025 May 30];13(12):1472–83. Available from:https://pubmed.ncbi.nlm.nih.gov/25326522/

  43. Wang Z, Zhu WG, Xu X. Ubiquitin-likemodifications in the DNA damage response.Mutation Research/Fundamental and MolecularMechanisms of Mutagenesis. 2017 Oct 1;803–805:56–75.

  44. Petsalaki E, Zachos G. DNA damage responseproteins regulating mitotic cell division: doubleagents preserving genome stability. FEBS J[Internet]. 2020 May 1 [cited 2025 May30];287(9):1700–21. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/febs.15240

  45. Puerta-Ortiz JA, Morales-Aramburo J. Efectosbiológicos de las radiaciones ionizantes. RevistaColombiana de Cardiología [Internet]. 2020 [cited2025 May 30];27(S1):61–71. Available from:www.elsevier.es/revcolcar

  46. Wu X, Nethery RC, Sabath B, Braun D,Dominici F, James C. Exposure to air pollution andCOVID-19 mortality in the United States: Anationwide cross-sectional study. MedRxiv[Internet]. 2020 Apr 27 [cited 2025 May30];2020.04.05.20054502. Available from:https://www.medrxiv.org/content/10.1101/2020.04.05.20054502v2

  47. Coutiño E. Papel de la membrana en lasaneuploidías. 11o Congreso Latinoamérica deGenética y 3.er Congreso de Mutagénesis,Carcinogénesis y Teratogénesis, Ambiental. PuertoVallarta, Guadalajara; 1994.

  48. Coutiño E. Despolarizantes de membrana y laparticipación del calcio en la inducción deanomalías anafásicas [Sesión de congreso]. In:Congreso Nacional de Biotecnología y SaludAmbiental. Zacatecas; 2019.

  49. Coutiño E. Plata coloidal sus repercusiones a lasalud. In: XXVII Congreso de Bioquímica. Mérida;2008.

  50. Ávila L, Coutiño E, Arroyo O. Hemoxigenase-1, iron, and bilirubin levels as oxidative stressindicators of colloidal silver exposure in humanlymphocytes. Int J Adv Res (Indore). 2023 Feb28;11(02):398–405.168




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Educ Bioquimica. 2025;44