medigraphic.com
SPANISH

Cirujano General

ISSN 2594-1518 (Electronic)
ISSN 1405-0099 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 4

<< Back Next >>

Cir Gen 2025; 47 (4)

Epigenetic mechanisms in sepsis

Medina LJL
Full text How to cite this article 10.35366/122123

DOI

DOI: 10.35366/122123
URL: https://dx.doi.org/10.35366/122123

Language: Spanish
References: 20
Page: 242-253
PDF size: 954.81 Kb.


Key words:

sepsis, epigenetics, DNA methylation, histone modification, non-coding RNA, immune response.

ABSTRACT

Introduction: sepsis is a clinical syndrome characterized by a dysregulated immune response to infection, often resulting in organ dysfunction. Despite advances in intensive care, mortality rates remain high, and the molecular mechanisms are not fully understood. Objective: to examine current knowledge on epigenetic mechanisms involved in the pathogenesis and progression of sepsis. Material and methods: a comprehensive literature review was conducted on studies published in the last decade, focusing on key epigenetic regulators such as DNA methylation, histone modifications, and non-coding RNAs and their role in modulating immune responses in sepsis. Results: epigenetic modifications influence the transcriptional control of genes involved in inflammation, immune tolerance, and cellular metabolism during sepsis. Altered epigenetic states contribute to the transition from hyperinflammation to immunosuppression, with emerging evidence suggesting their potential as biomarkers and therapeutic targets. Conclusions: epigenetic regulation represents an important aspect of the pathophysiology of sepsis. Understanding these mechanisms may lead to novel diagnostic strategies and personalized therapeutic interventions.


REFERENCES

  1. Falcao-Holanda RB, Brunialti MKC, Jasiulionis MG, Salomao R. Epigenetic regulation in sepsis, role in pathophysiology and therapeutic perspective. Front Med (Lausanne). 2021; 8: 685333. Available in: https://doi.org/10.3389/fmed.2021.685333

  2. Peixoto P, Cartron PF, Serandour AA, Hervouet E. From 1957 to nowadays: A brief history of epigenetics. Int J Mol Sci. 2020; 21: 7571. Available in: https://doi.org/10.3390/ijms21207571

  3. Zhang X, Zhang Y, Yuan S, Zhang J. The potential immunological mechanisms of sepsis. Front Immunol. 2024; 15: 1434688. Available in: https://doi.org/10.3389/fimmu.2024.1434688

  4. Gandhirajan A, Roychowdhury S, Vachharajani V. Sirtuins and sepsis: Cross talk between redox and epigenetic pathways. Antioxidants (Basel). 2022; 11: 3. Available in: https://doi.org/10.3390/antiox11010003

  5. Yang Y, Deng X, Li W, Leng Y, Xiong Y, Wang B, et al. Targeting the epigenetic regulation of ferroptosis: a potential therapeutic approach for sepsis-associated acute kidney injury. Clin Epigenetics. 2025; 17: 57. Available in: https://doi.org/10.1186/s13148-025-01861-9

  6. Zheng F, Pan Y, Yang Y, Zeng C, Fang X, Shu Q, Chen Q. Novel biomarkers for acute respiratory distress syndrome: genetics, epigenetics and transcriptomics. Biomark Med. 2022; 16: 217-231. Available in: https://doi.org/10.2217/bmm-2021-0749

  7. Wu D, Shi Y, Zhang H, Miao C. Epigenetic mechanisms of immune remodeling in sepsis: targeting histone modification. Cell Death Dis. 2023; 14: 112. Available in: https://doi.org/10.1038/s41419-023-05656-9

  8. Wen R, Liu YP, Tong XX, Zhang TN, Yang N. Molecular mechanisms and functions of pyroptosis in sepsis and sepsis-associated organ dysfunction. Front Cell Infect Microbiol. 2022; 12: 962139. Available in: https://doi.org/10.3389/fcimb.2022.962139

  9. Oblak L, van der Zaag J, Higgins-Chen AT, Levine ME, Boks MP. A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. Ageing Res Rev. 2021; 69: 101348. Available in: https://doi.org/10.1016/j.arr.2021.101348

  10. Gjaltema RAF, Rots MG. Advances of epigenetic editing. Curr Opin Chem Biol. 2020; 57: 75-81. Available in: https://doi.org/10.1016/j.cbpa.2020.04.020

  11. Zhao S, Liao J, Shen M, Li X, Wu M. Epigenetic dysregulation of autophagy in sepsis-induced acute kidney injury: the underlying mechanisms for renoprotection. Front Immunol. 2023; 14: 1180866. Available in: https://doi.org/10.3389/fimmu.2023.1180866

  12. Manetti AC, Maiese A, Di Paolo M, De Matteis A, La Russa R, Turillazzi E, et al. MicroRNAs and sepsis-induced cardiac dysfunction: a systematic review. Int J Mol Sci. 2021; 22: 321. Available in: https://doi.org/10.3390/ijms22010321

  13. Sawalha K, Norgard N, López-Candales A. Epigenetic regulation and its effects on aging and cardiovascular disease. Cureus. 2023; 15: e39395. Available in: https://doi.org/10.7759/cureus.39395

  14. Ghafouri-Fard S, Shoorei H, Sabernia T, Hussen BM, Taheri M, Pourmoshtagh H. Circular RNAs and inflammation: Epigenetic regulators with diagnostic role. Pathol Res Pract. 2023; 251: 154912. Available in: https://doi.org/10.1016/j.prp.2023.154912

  15. Sun Z, Song Y, Li J, Li Y, Yu Y, Wang X. Potential biomarker for diagnosis and therapy of sepsis: Lactylation. Immun Inflamm Dis. 2023; 11: e1042. Available in: https://doi.org/10.1002/iid3.1042

  16. Dai W, Zhou W. A narrative review of precision medicine in neonatal sepsis: genetic and epigenetic factors associated with disease susceptibility. Transl Pediatr. 2023; 12: 749-767. Available in: https://doi.org/10.21037/tp-22-369

  17. Torres JSS, Tamayo-Giraldo FJ, Bejarano-Zuleta A, Nati-Castillo HA, Quintero DA, Ospina-Mejía MJ, et al. Sepsis and post-sepsis syndrome: a multisystem challenge requiring comprehensive care and management - a review. Front Med (Lausanne). 2025; 12: 1560737. Available in: https://doi.org/10.3389/fmed.2025.1560737

  18. Zhang M, Montroy J, Sharma R, Fergusson DA, Mendelson AA, Macala KF, et al. The effects of biological sex on sepsis treatments in animal models: a systematic review and a narrative elaboration on sex- and gender-dependent differences in sepsis. Crit Care Explor. 2021; 3: e0433. Available in: https://doi.org/10.1097/CCE.0000000000000433

  19. Cross D, Drury R, Hill J, Pollard AJ. Epigenetics in sepsis: understanding its role in endothelial dysfunction, immunosuppression, and potential therapeutics. Front Immunol. 2019; 10: 1363. Available in: https://doi.org/10.3389/fimmu.2019.01363

  20. Vachharajani V, McCall CE. Epigenetic and metabolic programming of innate immunity in sepsis. Innate Immun. 2019; 25: 267-279. Available in: https://doi.org/10.1177/1753425919842320




Figure 1
Figure 2
Figure 3
Figure 4

2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Cir Gen. 2025;47