Revista Latinoamericana de Cirugía

Contents by Year, Volume and Issue

Table of Contents

General Information

Instructions for Authors

Message to Editor

Editorial Board

>Journals >Revista Latinoamericana de Cirugía >Year 2012, Issue 1

Godínez-Rubí M, Valle-Anaya MG, Anaya-Prado R
Water-soluble vitamins and their effect on genic expression
Rev Latinoam Cir 2012; 2 (1)

Language: Español
References: 70
Page: 40-48
PDF: 190.72 Kb.

Full text


Nutrition, as a science, was born by the end of the 17th century and the beginnings of the 19th century, when Lavoisier began studying metabolism. However, Hippocrates (400 B.C.) already used to say: “as long as man can be cured with food, do not use drugs”. We now know that health depends on genetic structure and a great deal of elements that integrate the environment. We can highlight, as one of the most important ones, the nutrients we eat. The interaction between these two factors (gens and nutrients) is currently under investigation by a new science called nutritional genomics. This science describes the functional interactions of food and its components with the genome at the molecular, cellular and systemic levels, with the sole purpose of either preventing or treating diseases through diet. Nutritional genomics involves both nutrigenomics and nutrigenetics. The former studies the effects of nutrients and substances we eat in food over genic expression. nutrigenetics deals with the way different genetic variants (polymorphisms) favors different responses to specific nutrients which, eventually, leads to both different health states and diseases among individuals. Nutritional genomics is a young science with many areas still awaiting to be described. The role of water-soluble vitamins in maintaining health has left being only enzyme cofactors to become active regulators of gen expressions. Nevertheless, more research is necessary to understand their role and to use that knowledge for both prevention and management of many diseases, particularly cancer and degenerative chronic diseases.

Key words: Water-soluble vitamins, genetic expression.


  1. Ordovás JM, Mooser V. Nutrigenomics and nutrigenetics. Curr Opin Lipidol 2004;15(2):101-108.

  2. Hocquette JF, Cassar-Malek I, Scalbert A, Guillou F. Contribution of genomics to the understanding of physiological functions. J Physiol Pharmacol 2009;60(S3):S5-S16.

  3. Lau FC, Bagchi M, Sen C, Roy S, Bagchi D. Nutrigenomic analysis of diet-gene interactions on functional supplements for weight management. Curr Genomics 2008;9(4):239-251.

  4. Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J (ed). Biología celular y molecular. 5ª edición. Buenos Aires: Editorial Médica Panamericana; 2005: 101-135.

  5. Oliva R, Oriola J, Claria J. Genoma humano y estructura y expresión de los genes. En: Oliva R, Ballesta F, Oriola J, Claria J (ed). Genética Médica. 3ª edición. Barcelona: Universitat de Barcelona; 2004: 41-43.

  6. Murray RK et al (editors). Harper. Bioquímica ilustrada. 28a edición. México: Mac Graw-Hill;2010.

  7. Shils E, Olson JA, Shike M, Ross AC (ed). Nutrición en salud y enfermedad. 9º edición. México. McGraw-Hill, 2002: 443-541.

  8. Singleton CK, Martin PR. Molecular mechanisms of thiamine utilization. Curr Mol Med 2001(1):197-207.

  9. Mee L, Nabokina SM, Sekar VT, Subramanian VS, Maedler K, Said HM. Pancreatic beta cells and islets take up thiamin by a regulated carrier-mediated process: studies using mice and human pancreatic preparations. Am J Physiol Gastrointest Liver Physiol 2009;297(1):197-206.

  10. Basu TK, Dickerson JW. The thiamin status of early breast cancer patients with particular reference to those with breast and bronchial carcinomas. Oncology 1976;33:250-252.

  11. Liu S, Huang H, Lu X, Golinski M, Comesse S, Watt D, Grossman RB, Moscow JA. Down-regulation of thiamine transporter THTR2 gene expression in breast cancer and its association with resistance to apoptosis. Mol Cancer Res 2003;1(9):665-673.

  12. Liu S, Stromberg A, Tai HH, Moscow JA. Thiamine transporter gene expression and exogenous thiamine modulate the expression of genes involved in drug and prostaglandin metabolism in breast cancer cells. Mol Cancer Res 2004;2(8):477487.

  13. Pekovich SR, Martin PR, Singleton CK. Thiamine deficiency decreases steady-state alpha-transketolase and pyruvate dehydrogenase but not ketoglutarate dehydrogenase mRNA levels in three human cell types. J Nutr 1998;128(4):683-687.

  14. Powers HJ. Riboflavin (vitamin B-2) and health. Am J Clin Nutr 2003;77(6):1352-1360.

  15. Besaratinia A, Kim S, Bates SE, Pfeifer GP. Riboflavin activated by ultraviolet A1 irradiation induces oxidative DNA damage-mediated mutations inhibited by vitamin C. Proc Natl Acad Sci USA 2007;104(14):5953-5958.

  16. Kumar V, Lockerbie O, Keil SD, Ruane PH, Platz MS, Martin CB, Ravanat JL, Cadet J, Goodrich RP. Riboflavin and UV-light based pathogen reduction: extent and consequence of DNA damage at the molecular level. Photochem Photobiol 2004;80:15-21.

  17. Mantheya KC, Rodriguez-Melendez R, Hoia JT, Zempleni J. Riboflavin deficiency causes protein and DNA damage in HepG2 cells, triggering arrest in G1 phase of the cell cycle. J Nutr Biochem 2006;17(4):250-256.

  18. Manthey KC, Chew YC, Zempleni J. Riboflavin deficiency impairs oxidative folding and secretion of apolipoprotein B-100 in HepG2 cells, triggering stress response systems. J Nutr 2005;35(5):978-982.

  19. Camporeale G, Zempleni J. Oxidative folding of interleukin-2 is impaired in flavin-deficient Jurkat cells, causing intracellular accumulation of interleukin-2 and increased expression of stress response genes. J Nutr 2003;133:668-672.

  20. Premkumar VG, Yuvaraj S, Shanthi P, Sachdanandam P. Co-enzyme Q10, riboflavin and niacin supplementation on alteration of DNA repair enzyme and DNA methylation in breast cancer patients undergoing tamoxifen therapy. BJN 2008;100:1179-1182.

  21. Webster RP, Gawde MD, Bhattacharya RK. Modulation of carcinogen-induced DNA damage and repair enzyme activity by dietary riboflavin. Cancer Lett 1996;98(2):129-35.

  22. Pangrekar J, Krishnaswamy K, Jagadeesan V. Effects of riboflavin deficiency and riboflavin administration on carcinogen-DNA binding. Food Chem Toxicol 1993;31(10):745-50.

  23. Oka T. Modulation of gene expression by vitamin B6. Nutrition Res Rev 2001;14:257-265.

  24. Allgood VE, Oakley RH, Cidlowsk JA. Modulation by vitamin B6 of glucocorticoid receptor-mediated gene expression requires transcription factors in addition to the glucocorticoid receptor. J Biol Chem 1993;268(28):20870-20676.

  25. Oka T, Komori N, Kuwahata M, Hiroi Y, Shimoda T, Okada M, Natori Y. Pyridoxal-5-phosphate modulates expression of cytosolic asparate aminotransferase gene by inactivation of glucocorticoid receptor. J Nutr Sci Vitaminol 1995;41:363-375.

  26. Oka T, Komori N, Kuwahata M, Suzuki I, Okada M, Natori Y. Effect of vitamin B6 deficiency on the expression of glycogen phosphorylase mRNA in rat liver and skeletal muscle. Experientia 1994;50:127-129.

  27. Oka T, Komori N, Kuwahata M, Okada M, Natori Y. Vitamin B6 modulates expression of albumin gene by inactivating tissue-specific DNA-binding protein in rat liver. Biochem J 1995;309:242-248.

  28. Chang SJ, Chuang HJ, Chen HH. Vitamin B6 down-regulates the expression of human GPIIb gene. J Nutr Sci Vitaminol 1999;45:471-479.

  29. Oka T, Komori N, Kuwahata M, Sassa T, Suzuki I, Okada M, Natori Y. Vitamin B6 deficiency causes activation of RNA polymerase and general enhancement of gene expression in rat liver. FEBS Letters 1993;331:162-164.

  30. Huq M, Tsai NP, Lin YP, Higgins L, Wei LN. Vitamin B6 conjugation to nuclear corepressor RIP140 and its role in gene regulation. Nat Chem Biol 2007;3(3):161-165.

  31. Komatsu S, Watanabe H, Oka T, Tsuge H, Kat N. Dietary vitamin B6 suppresses colon tumorigenesis, 8-hydroxyguanosine, 4-hydroxynonenal, and inducible nitric oxide synthase protein in azoxymethane-treated mice. J Nutr Sci Vitaminol 2002;48(1):65-68.

  32. Lin J, Lee IM, Cook NR, Selhub J, Manson J, Buring JE, Zhang SM. Plasma folate, vitamin B-6, vitamin B-12, and risk of breast cancer in women. Am J Clin Nutr 2008;87:734-43.

  33. Gravel RA, Narang MA. Molecular genetics of biotin metabolism: old vitamin, new science. J Nut Bioch 2005;16:428-431.

  34. Zempleni J, Wijeratne SSK, Hassan YI. Biotin. Biofactors 2009;35(1):36-46.

  35. Hassan YI, Zempleni J. A novel, enigmatic histone modification: biotinylation of histones by holocarboxylase synthetase. Nut Rev 2008:66(12):721-725.

  36. Zempleni J, Chew YC, Hassan YI, Wijeratne SSK. Epigenetic regulation of chromatin structure and gene function by biotin: are biotin requirements being met? Nutr Rev 2008;66(Suppl 1):S46-S48.

  37. Pestinger V, Wijeratne SS, Rodríguez-Melendez R, Zempleni J. Novel histone biotynilation marks are enriched in repeat regions and participate in repression of transcriptionally competent genes. J Nutr Biochem 2011;22(4):328-333.

  38. Rodríguez-Meléndez R, Cano S, Méndez ST, Velázquez A. Biotin regulates the genetic expression of holocarboxylase synthetase and mitochondrial carboxylases in rats. J Nutr 2001;131:1909-1913.

  39. Dakshinamurti K, Li W. Transcriptional regulation of liver phosphoenolpyruvate carboxykinase by biotin in diabetic rats. Mol Cell Biochem 1994;132(2):127-132.

  40. Vilches-Flores A, Tovar AR, Marín-Hernández A, Rojas-Ochoa A, Fernández-Mejía C. Biotin increases glucokinase expression via soluble guanylate cyclase/protein kinase G, adenosine triphosphate production and autocrine action of insulin in pancreatic rat islets. J Nutr Biochem 2010;21(7):606-612.

  41. Sugita Y, Shirakawa H, Sugimoto R, Furukawa Y, Komai M. Effect of biotin treatment on hepatic gene expression in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 2008;72(5):1290-1298.

  42. Johnson IT. Micronutrients and cancer. Proc Nutr Soc 2004;63:587-595

  43. Ulrich CM, Reed MC, Nijhout F. Modeling folate, one-carbon metabolism, and DNA methylation. Nutr Rev 2008;66(S1):S27-S30

  44. Davis CD, Uthus EO. DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med 2004;229:988-995.

  45. Sanjoaquin MA, Allen N, Couto E, Roddam AW, Key TJ. Folate intake and colorectal cancer risk: ameta-analytical approach. Int J Cancer 2005;113:825-828.

  46. Duthie SJ, Narayanan S, Sharp L, Little J, Basten G, Powers H. Folate, DNA stability and colorrectal neoplasia. Proc Nutr Soc 2004;63:571-578.

  47. Kronenberg G, Colla M, Endres M. Folic acid, neurodegenerative and neuropsychiatric disease. Curr Mol Med 2009;9(3):315-323.

  48. Fenech M. Folate, DNA damage and the aging brain. Mech Ageing Dev 2010;131(4):236-241.

  49. Wierzbicki AS. Homocysteine and cardiovascular disease: a review of the evidence. Diabetes Vasc Dis Res 2007;4:143-149.

  50. Mangum JH, North JA. Vitamin B12-dependent methionine biosynthesis in Hep-2 cells. Biochem Biophys Res Commun 1968;32:105-110.

  51. Mangum JH, Murray BK, North JA. Vitamin B12-dependent methionine biosynthesis in cultured mammalian cells. Biochemistry 1969;8:3496-3499.

  52. Gulati S, Brody LC, Banerjee R. Posttranscriptional regulation of mammalian methionine synthase by B12. Biochem Biophys Res Commun 1999;259:436-442.

  53. Oltean S, Banerjee R. Nutritional modulation of gene expression and homocysteine utilization by vitamin b12. J Biol Chem 2003;278(23):20778-20784.

  54. Scalabrino G, Nicolini G, Buccellato FR, Peracchis M, Tredici G, Manfridi A, Pravettoni G. Epidermal growth factor as a local mediator of the neurotrophic action of vitamin B12 (cobalamin) in the rat central nervous system. FASEB J 1999;13:2083-2090.

  55. Sacalabrino G, Tredici G, Buccellato FR, Manfridi A. Further evidence for the involvement of epidermal growth factor in the signaling pathway of vitamin B12 (cobalamin) in the rat central nervous system. J Neuropathol Exp Neurol 2000;59(9):808-814.

  56. Peracchi M, Bamonti Catena F, Pomati M, De Franceschi M, Sacalabrino G. Human cobalamin deficiency: alterations in serum tumour necrosis factor- and epidermal growth factor. Eur J Haematol 2001;67:123-127.

  57. Scalabrino G, Corsi MM, Veber D, Buccellato FR, Pravettoni G, Manfridi A, Magni P. Cobalamin (vitamin B(12) positively regulates interleukin-6 levels in rat cerebrospinal fluid. J Neuroimmunol 2002;127(1-2):37-43.

  58. Mutti E, Magnaghi V, Veber D, Faroni A, Pece S, Di Fiore PP, Scalabrino G. Cobalamin deficiency-induced changes of epidermal growth factor (EGF)-receptor expression and EGF levels in rat spinal cord. Brain Res 2011;1376:23-30.

  59. Belin S, Kaya F, Burtey S, Fontes M. Ascorbic acid and gene expression: another example of regulation of gene expression by small molecules? Curr Genomics 2010;11:52-57.

  60. Li Y, Schellhorn HE. New developments and novel therapeutic perspectives for vitamin C. J Nutr 2007;137:2171-2184.

  61. Savini I, Catani MV, Arnone R, Rossi A, Frega G, Del Principe D, Avigliano L. Translational control of the ascorbic acid transporter SVCT2 in human platelets. Free Radic Biol Med 2007;42(5):608-616.

  62. Ikeda S, Horio F, Yoshida A, Kakihuma T. Ascorbic acid deficiency reduces hepatic apolipoprotein A-I mRNA in scurvy-prone ODS rats. J Nutr 1996;126:(10):2505-2511.

  63. Ikeda S, Horio F, Kakinuma A. Ascorbic acid deficiency changes hepatic gene expression of acute phase proteins in scurvy-prone ODS Rats. J Nutr 1998;128:(5):832-838.

  64. Horio F, Kiyama K, Kobayashi M, Kawai K, Tsuda T. Ascorbic acid deficiency stimulates hepatic expression of inflammatory chemokine, cytokine-induced neutrophil chemoattractant-1, in scurvy-prone ODS rats. J Nutr Sci Vitaminol 2006;52(1):28-32.

  65. Bowie AG, O’Neill LAJ. Vitamin C inhibits NF-kappa B activation by TNF via the activation of p38 mitogen-activated protein kinase. J Immunol 2000;165(12):7180-7188.

  66. Mizutani A, Tsukagoshi N. Molecular role of ascorbate in enhancement of NO production in activated macrophage-like cell line. J Nutr Sci Vitaminol 1999;45(4):423-435.

  67. Lutsenko EA, Cárcamo JM, Golde DW. Vitamin C prevents DNA mutation induced by oxidative stress. J Biol Chem 2002;277(19):16895-16899.

  68. Knowles HJ, Raval RR, Harris AL. Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res 2003;63:1764-1769.

  69. Kuiper C, Molenaar GM, Dachs GU. Low ascorbate levels are associated with increased hypoxia-inducible factor-1 activity and an aggressive tumor phenotype in endometrial cancer. Cancer Res 2010;70:5749-5758.

  70. Catani MA, Costanzo A, Savini I, Levrero M, de Laurenzi V, Wang JYJ, Melino G, Avigliano L. Ascorbate up-regulates MLH1 (Mut L homologue-1) and p73: implications for the cellular response to DNA damage. Biochem J 2002;364:441-447.

>Journals >Revista Latinoamericana de Cirugía >Year 2012, Issue 1

· Journal Index 
· Links 

Copyright 2019