medigraphic.com
SPANISH

Revista de Especialidades Médico-Quirúrgicas

Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2013, Number 3

<< Back Next >>

Rev Esp Med Quir 2013; 18 (3)

Mechanical-Structural Analysis of Bone Graft in the C3-C5 Segment of the Cervical Spine as Treatment of Fractures, with Finite Elements Method

González RGA, Agraz CA, Rico FR, Beltrán FJA
Full text How to cite this article

Language: Spanish
References: 10
Page: 195-199
PDF size: 224.92 Kb.


Key words:

cervical fractures, finite elements, processing, stability, bone graft.

ABSTRACT

Background: Cervical corpectomy is a surgical resource needed to replace vertebral body damaged by the action of some sort of accident causing a fracture. In flexion compression fractures stage 5 in the vertebral body, the degree of complexity must be evaluated in order to determine if it is necessary to perform a corpectomy with bone graft. Behavior of such a structural graft should be known.
Objective: To report results of the mechanic-static structural analysis of assembly of a model of finite element in the C3-C5 cervical range, including a bone graft of trapezoidal-shaped cut on the platforms at an angle of 10 degrees each, secured by a cervical plate.
Material and method: An observational study was made in which a finite elements model conformed by cervical C3, C4 and C5 was reproduced, with a bone graft in the region of the vertebral body from cervical C4 in an specific angulation, assured by a cervical plaque. The cases presented in the study are: 80 N, 637.5 N and 6,374.5 N, corresponding to the weight of the head, the weight of the patient and the value at which the vertebral body fractures. We used ANSYS program.
Results: The results indicated displacements smaller than 1 mm between the graft and the adjacent vertebral bodies. Conclusions: According to the concept of backbone stability described by White & Panjabi, the model was stable since no exceeded reference limits of 3.0 mm.


REFERENCES

  1. Panjabi M, White A. Biomechanics of non-acute cervical spinal cord trauma. Spine 1988;13:838-842.

  2. Allen Bl, Ferguson Rl, Lehmann T. A mechanistic classification of closed, indirect fractures and dislocations of the lower cervical spine. Spine 1982;7:1-27.

  3. Yoganandan N, Haffner M, Maiman D, Nichols H, et al. Epidemiology and injury biomechanics in motor vehicle related trauma to the human cervical spine. Sae 1989. Doi:10.4271/892438.

  4. Huelke D, et al. 1981 Cervical injuries suffered in automobile crashes. J Neurosurgery 1981;54:316-322.

  5. Thorson J. Neck injuries in road accidents. Scand J Rehab Med 1972;4:110-113.

  6. Bohler J. Anterior stabilization for acute fractures and nonunion of the dens. J Bone Joint Surg Am 1982,64:18-27.

  7. Bohler J, Gaudernack T. Anterior plate stabilization for fracture-dislocation of the lower cervical spine. J Trauma 1980;20:203-205.

  8. Bohlman H. Acute fractures and dislocation of the cervical spine: an analysis of three hundred hospitalized patients and review of the literature. J Bone Joint Surg Am 1979;61:1119- 1142.

  9. Beltrán J. Distribución de esfuerzos por la acción de cargas de compresión en la vértebra cervical C5, empleando el método del elemento finito. Científica 2005;9:135-142.

  10. Carbajal M. Biomecánica de un dispositivo de fijación interna para el tratamiento, mediante el sistema Dufoo de padecimientos que afectan a los cuerpos vertebrales. Tesis de doctorado. México: Sepi-Esime Zacatenco, 2005.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Esp Med Quir. 2013;18