medigraphic.com
SPANISH

Revista Cubana de Medicina Tropical

ISSN 1561-3054 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2013, Number 3

<< Back Next >>

Rev Cubana Med Trop 2013; 65 (3)

Increased activity of cytochrome P450 monooxygenase enzymes in reference insecticide-resistant Aedes aegypti strains from Cuba

French PL, Rodríguez CMM, Bisset LJA, Ricardo LY, Gutiérrez BG, Fuentes LI
Full text How to cite this article

Language: Spanish
References: 23
Page: 328-338
PDF size: 173.21 Kb.


Key words:

Aedes aegypti, insecticide resistance, cytochrome P450 monooxygenases.

ABSTRACT

Introduction: cytochrome P450 monooxygenase detoxifying enzymes (MFO) are one of the main resistance mechanisms of Aedes aegypti to insecticides. In vivo studies of the presence of these enzymes have been conducted in Cuba with the use of synergists. However, their activity has not been quantitatively determined in vitro, an indispensable step in studies about metabolic resistance in insects.
Objective: standardize a method to detect the activity of cytochrome P450 monooxygenase in vitro, and then determine such activity in larvae and adults of Aedes aegypti reference strains.
Methods: the study was based on three laboratory strains of Aedes aegypti selected for 14 or 15 generations with temephos, deltamethrin or propoxur, respectively, and a strain susceptible to insecticides.
Results: the conditions for enzyme activity assays were established (protein and substrate concentration: 0.4 mg/mL and 12 mmol/L, respectively, and reaction time: 10 min). There was a significant increase in cytochrome P450 monooxygenase activity in resistant strains, with a higher phenotypic frequency in the larval stage.
Conclusions: modifications to the technique used for determination of enzymatic activity made it possible to distinguish between mosquitoes from susceptible and resistant strains in larval and adult stages, providing a new tool for the detection of metabolic resistance in Cuba.


REFERENCES

  1. Organización Mundial de la Salud. Report of the Scientific Working Group on dengue. Document WHO/TDR/SWG/08 Geneva, Switzerland, WHO; 2006.

  2. van den Berg H, Zaim M, Yadav RS, Soares A, Ameneshewa B, Mnzava A, et al. Global trends in the use of insecticides to control vector-borne diseases. Environ Health perspect. 2012;120(4):577-82.

  3. Strode C, Wondji CS, David JP, Hawkes NJ, Lumjuan N, Nelson DR, et al. Genomic analysis of detoxification genes in the mosquito Aedes aegypti. Insect Biochem Mol Biol. 2008;38(1):113-23.

  4. Rodríguez M, Bisset J, Díaz C, Soca A. Adaptación de los métodos en placas de microtitulación para la cuantificación de la actividad de esterasas y glutation-s-transferasas en Aedes aegypti. Rev Cubana Med Trop. 2001;53:32-6.

  5. Rodríguez MM, Bisset JA, De Armas Y, Ramos F. Pyrethroid insecticide-resistant strain of Aedes aegypti from Cuba induced by deltamethrin selection. J Am Mosq Control Assoc. 2005;21(4):437-45.

  6. Rodríguez MM, Bisset JA, Fernández D. Levels of insecticide resistance and resistance mechanisms in Aedes aegypti from some Latin American countries. J Am Mosq Control Assoc. 2007;23: 420-9.

  7. Bisset J, Rodríguez M, Moya M, Ricardo R, Montada D, Gato R, et al. Efectividad de formulaciones de insecticidas para el control de adultos de Aedes aegypti en La Habana, Cuba. Rev Cubana Med Trop. 2011;63:166-70.

  8. Brogdon WG, McAllister JC, Vulule J. Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. J Am Mosq Control Assoc. 1997;13(3):233-7.

  9. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal biochem. 1976;72:248-54.

  10. Feyereisen R. Evolution of insect P450. Biochem Soc Trans. 2006;34(6):1252-5.

  11. Urmila J, Vijayan VA, Ganesh KN, Gopalan N, Prakash S. Deltamethrin tolerance and associated cross resistance in Aedes aegypti from Mysore. Indian J Med Res. 2001;113:103-7.

  12. Penilla RP, Rodriguez AD, Hemingway J, Torres JL, Arredondo-Jimenez JI, Rodriguez MH. Resistance management strategies in malaria vector mosquito control. Baseline data for a large-scale field trial against Anopheles albimanus in Mexico. Med Vet Entomol. 1998;12(3):217-33.

  13. Pethuan S, Jirakanjanakit N, Saengtharatip S, Chareonviriyaphap T, Kaewpa D, Rongnoparut P. Biochemical studies of insecticide resistance in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Thailand Trop Biomed. 2007;24(1):7-15.

  14. Bisset JA, Marín R, Rodríguez MM, Severson DW, Ricardo Y, French L, et al. Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica. J Med Entomol. 2013;50(2):352-61.

  15. Polson KA, Brogdon WG, Rawlins SC, Chadee DD. Characterization of insecticide resistance in Trinidadian strains of Aedes aegypti mosquitoes. Acta Trop. 2010;117(1):31-8.

  16. Flores AE, Grajales JS, Salas IF, Garcia GP, Becerra MH, Lozano S, et al. Mechanisms of insecticide resistance in field populations of Aedes aegypti (L.) from Quintana Roo, Southern Mexico. J Am Mosq Control Assoc. 2006;22:672-7.

  17. Zhao L, Pridgeon JW, Becnel JJ, Clark GG, Linthicum KJ. Cytochrome c gene and protein expression: developmental regulation, environmental response, and pesticide sensitivity in Aedes aegypti. J Med Entomol. 2008;45(3):401-8.

  18. Stevenson BJ, Pignatelli P, Nikou D, Paine MJ. Pinpointing P450s associated with pyrethroid metabolism in the dengue vector, Aedes aegypti: developing new tools to combat insecticide resistance. PLoS Negl Trop Dis. 2012;6(3):e1595.

  19. Martins AJ, Lins RA, Linss JGB, Peixoto AA, Valle D. Voltage-gated sodium channel polymorphism and metabolic resistance in pyrethroid-resistant Aedes aegypti from Brazil. Am J Trop Med Hyg. 2009;81(1):108-15.

  20. Rodríguez MM, Bisset J, Ruiz M, Soca A. Cross-resistance to pyrethroid and organophosphorus insecticides induced by selection with temephos in Aedes aegypti (Diptera: Culicidae) from Cuba. J Med Entomol. 2002;39(6):882-8.

  21. Liu N, Li T, Reid WR, Yang T, Zhang L. Multiple Cytochrome P450 genes: their constitutive overexpression and permethrin induction in insecticide resistant mosquitoes Culex quinquefasciatus. PLoS One. 2011;6(8):e23403.

  22. Bariami V, Jones CM, Poupardin R, Vontas J, Ranson H. Gene amplification, ABC transporters and cytochrome P450s: Unraveling the molecular basis of pyrethroid resistance in the dengue vector, Aedes aegypti. PLoS Negl Trop Dis. 2012;6(6):e1692.

  23. Montella IR, Schama R, Valle D. The classification of esterases: an important gene family involved in insecticide resistance a review. Mem Inst Oswaldo Cruz. 2012;107(4):437-49.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Med Trop. 2013;65