medigraphic.com
SPANISH

Revista Mexicana de Ingeniería Biomédica

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2004, Number 1

<< Back Next >>

Rev Mex Ing Biomed 2004; 25 (1)

Simulations of Caffeine Interaction with Nucleic acid Bases. Energy Minim and Transition Pathways

Deriabina A, Cruz A, González E, Grokhlina TI, Poltev VI
Full text How to cite this article

Language: Spanish
References: 24
Page: 34-43
PDF size: 204.03 Kb.


Key words:

Nucleic acids, Caffeine, Intermolecular interactions, Molecular mechanics.

ABSTRACT

Caffeine has an influence on an extended set of biological processes. To explain molecular mechanisms of this influence, we are performing calculations of the interaction energy of caffeine molecule with nucleic acid fragments via molecular mechanics methods. The calculations reveal three types of mutual caffeine-base and caffeine-basepair arrangements corresponding to the energy minima. Besides well known stacking arrangements, two other types of mutual positions of molecules in minima have been found; corresponding to planar and perpendicular arrangements with caffeine-base hydrogen bond formation. They are possible for both nucleic acid monomers and DNA duplexes. The calculations suggest possible influence of caffeine on DNA interactions with biologically active molecules via complex formation with basepairs and ligands.


REFERENCES

  1. Brice CF, Smith AP. Int J Food Sci Nutr 2002; 53: 55-64.

  2. Brauer LH, Buican B, De Wit H. Behav Pharmacol 2002; 5: 111-118.

  3. Nurminen ML, Niittynen L, Korpela R, Vapaatalo H. Eur J Clin Nutr 1999; 53: 831-839.

  4. Hixon SC, Yielding KL. Mutat Res 1976; 34: 195-200.

  5. 5. Wolf K, Kaudewitz F. Mol Gen Genet 1976; 146: 89-93.

  6. Eberhard C, Herrmann RL. J Bacteriol 1972; 112: 224-230.

  7. Selby CP, Sancar A. Biochemistry 1991; 30: 3841-3849.

  8. Traganos F, Kapuscinsky J, Darzynkiewicz Z. Cancer Res 1991; 51: 3682-3689.

  9. Lu YP, Lou YR, Xie JG, Peng QY, Liao J, Yang CS, Huang MT, Conney AH. PNAS 2002; 99(19): 12455-12460.

  10. Selby CP, Sancar A. Proc Natl Acad Sci USA 1990; 87: 3522-3525.

  11. Tempel K, von Zallinger CZ. Naturforsch 1997; 52: 466-474.

  12. Piosik J, Zdunek M, Kapuscinski J. Biochem Pharmacol 2002; 63: 635-646.

  13. Larsen RW, Jasuja R, Hetzler RK, Muraoka PT, Andrada VG, Jameson DM. Biophys J 1996; 70: 443-452.

  14. Davies DB, Veselkov DA, Evstigneev MP, Veselkov AN. J Chem Soc Perk Trans 2001; 2: 61-67.

  15. Davies DB, Veselkov DA, Djimant LN, Veselkov AN. Eur Biophys J 2001; 30: 354-366.

  16. Poltev VI, Shulyupina NV. J Biomol Struct Dyn 1986; 4: 739-765.

  17. Poltev VI, Deriabina AS, Gonzalez E, Grokhlina TI. Biophysics 2002; 47: 996-1004.

  18. Poltev et al. Artículo en preparación.

  19. Bratley P, Fox BL, Schrage LE. A guide to simulation. Springer-Verlag New York, N.Y. 2nd ed. 1987.

  20. Kan LS, Borer PhN, Cheng DM, Ts’o P. Biopolymers 1980; 19: 1641-1654.

  21. Fritzsche H, Petri I, Schutz H, Weller K, Sedmera R, Lang H. Biophysical Chem 1980; 11: 109-119.

  22. Fritzsche H, Lang H, Sprinz H, Pohle W. Biophysical Chem 1980; 11: 121-131.

  23. Falk M, Chew W, Walter JA, Kwiatkowski W, Barclay KD, Klassen GA Can J. Chem 1998; 76: 48-56.

  24. Danilov VI, Slyusarchuk ON, Poltev VI, Alderfer JL, Wollman RM, Brickmann JA, Lautenschlager P. J Biomol Struct Dyn 1992; 9: 1239-1252.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Ing Biomed. 2004;25