medigraphic.com
SPANISH

Revista Mexicana de Ingeniería Biomédica

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2015, Number 2

<< Back Next >>

Rev Mex Ing Biomed 2015; 36 (2)

On the identification of an ICA Algorithm for Auditory Evoked Potentials extraction: A Study on Synthetic Data

Castañeda-Villa N, Calderón-Ríos ER, Jiménez-González A
Full text How to cite this article

Language: English
References: 28
Page: 107-119
PDF size: 1181.55 Kb.


Key words:

synthetic auditory evoked potentials, independent component analysis, Amari performance index, signal interference ratio index.

ABSTRACT

Extracting characteristics and information from Auditory Evoked Potentials recordings (AEPs) involves difficulties due to their very low amplitude, which makes the AEPs easily hidden by artifacts from physiological or external sources like the EEG/EMG, blinking, and line-noise. To tackle this problem, some authors have used Independent Component Analysis (ICA) to successfully de-noise brain signals. However, since interest has been mainly focused on removing artifacts like blinking, not much attention has been paid to the quality of the recovered evoked potential. This is the AEP case, where literature reports interesting results on the de-noising matter, but without an objective evaluation of the AEP finally extracted (and the influence of different implementations or configurations of ICA). Here, to study the performance of three popular ICA algorithms (FastICA, Ext-Infomax, and SOBI) at separating AEPs from a mixture, a synthetic dataset composed of one Long Latency Auditory Evoked Potential (LLAEP) signal and the most frequent artifacts was generated. Next, the quality of the independent components (ICs) estimated by such algorithms was measured by using the AMARI performance index (Am), the signal interference ratio index (SIR), and the time required to achieve separation. Results indicated that the FastICA implementation, with the symmetric approach and the power cubic contrast function, is more likely to provide the best and faster separation of the LLAEP, which makes it suitable for this purpose.


REFERENCES

  1. Neurophysiology ASC. “Guideline 9A: guidelines on evoked potentials,” Am. J. Electroneurodiagnostic Technol., vol. 46, no. 3, pp. 240-53, 2006.

  2. C.C. Duncan, R.J. Barry, J.F. Connolly, C. Fischer, P.T. Michie, R. Näätänen, et al., “Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400,” Clin Neurophysiol., vol. 120, no. 11, pp. 1883-908, 2009.

  3. C.P. Zuluaga, R.C. Acevedo, “Estimación de potenciales evocados auditivos del tronco cerebral mediante descomposición modal empírica,” Rev. Mex. Ing. Biomed., vol. 2, no. 3, pp. 25-30, 2008.

  4. N. Castañeda-Villa, C.J. James, “Independent Component Analysis for Auditory Evoked Potentials and Cochlear Implant Artifact Estimation,” IEEE Trans Biomed Eng., vol. 58, no. 2, pp. 348-54, 2011.

  5. A. Delorme, T. Sejnowski, S. Makeig, “Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis,” Neuroimage, vol. 34, no. 4, pp. 1443-9, 2007.

  6. A.C. Fisher, W. El-Deredy, R.P. Hagan, M.C. Brown, P.J.G. Lisboa, “Removal of eye movement artefacts from single channel recordings of retinal evoked potentials using synchronous dynamical embedding and independent component analysis,” Med Biol Eng Comput, vol. 45, no. 1, pp. 69-77, 2007.

  7. D.M. Groppe, S. Makeig, M. Kutas, S. Diego, “Independent Component Analysis of Event-Related Potentials,” Cogn Sci Online, pp. 1-44, 2008.

  8. C. James, C. Hesse, “Independent component analysis for biomedical signals,” Physiol Meas, vol. 26, no. 1, pp. R15-39, 2005.

  9. C.A. Joyce, I.F. Gorodnitsky, M. Kutas, “Automatic removal of eye movement and blink artifacts from EEG data using blind component separation,” Psychophysiology, vol. 41, pp. 1-13, 2004.

  10. M. Klemm, J. Haueisen, G. Ivanova, “Independent component analysis: comparison of algorithms for the investigation of surface electrical brain activity,” Med Biol Eng Comput., vol. 47, no. 4, pp. 413-23, 2009.

  11. A. Craig, P. Boord, D. Craig, “Using independent component analysis to remove artifact from electroencephalographic measured during stuttered speech,” Med Biol Eng Comput., vol. 42, pp. 627-33, 2002.

  12. A. Hyvärinen, E. Oja, “Independent component analysis: algorithms and applications,” Neural Networks, vol. 13, no. 4-5, pp. 411-30, 2000.

  13. G.R. Naik, D.K.Kumar, “An Overview of Independent Component Analysis and Its Applications,” Informatica, vol. 35, pp. 63-81, 2011.

  14. R.J. Korhonen, J.C. Hernandez- Pavon, J. Metsomaa, H. Mäki, R.J. Ilmoniemi, J. Sarvas, “Removal of large muscle artifacts from transcranial magnetic stimulation-evoked EEG by independent component analysis,” Med Biol Eng Comput. vol. 49, no. 4, pp. 397-407, 2011.

  15. D. Iyer, G. Zouridakis, “Estimation of Brain Responses Based on Independent Component analysis and wavelet denoising,” Technical Report Number UH-CS-05-01, Biomedical Imaging Lab Department of Computer Science University of Houston, pp. 1-12, 2005.

  16. N. Yeung, R. Bogacz, C.B. Holroyd, S. Nieuwenhuis, J.D. Cohen, “Theta phase resetting and the error-related negativity,” Psychophysiology, vol. 44, no. 1, 39-49, 2007.

  17. P.E. McSharry, G.D. Clifford, L. Tarassenko, L.A. Smith, “A Dynamical model for Generating Synthetic Electrocardiogram Signals,” IEEE Trans Biomed Eng., vol. 50, no. 3, pp. 289-94, 2003.

  18. A. Hyvärinen, E. Oja, “A Fast Fixed-Point Algorithm for Independent Componet Analysis,” Neural Comput., vol. 9, pp. 1483-942, 1997.

  19. A.J. Bell, T.J. Sejnowski, “An information-maximisation approach to blind separation and blind deconvolution,” Neural Computation, vol. 7, no. 6, pp. 1129-1159, 1995.

  20. A. Belouchrani, K. Abed-meraim, “A Blind Source Separation Technique Using Second-Order Statistics,” IEEE Trans Signal Process, vol. 45, no. 2, pp. 434-44, 1997.

  21. T-W. Lee, M. Girolami, T.J. Sejnowski, “Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources,” Neural Comput., vol. 11, no. 2, pp. 417-41, 1999.

  22. W. Zhou, D. Chelidze, “Blind source separation based vibration mode identification,” Mech Syst Signal Process., vol. 21, no. 8, pp. 3072-87, 2007.

  23. T. Lee, T.J. Sejnowski, “Independent Component Analysis for Mixed Sub- Gaussian and Super- Gaussian Sources,” Jt Symp Neural Comput., vol. 4, pp. 132-9, 1997.

  24. A. Cichocki, S. Amari, “Robust Techniques for BSS and ICA with Noisy Data,” Adaptive Blind Signal and Image Processing, pp. 307-8, 2002.

  25. G. Gómez-Herrero, A. Gotchev, K. Egiazarian, “Distortion Measures for Sparse Signals,” Int Conf Comput Syst Technol - CompSysTech’ 2005, vol. 2, pp. 1-6, 2005.

  26. A. Delorme, S. Makeig, “EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” J Neurosci Methods, vol. 134, no. 1, pp. 9-21, 2004.

  27. E. Ollila, “The Deflation-Based FastICA Estimator: Statistical,” IEEE Trans Signal Process, vol. 58, no. 3, pp. 1527-41, 2010.

  28. F. Raimondo, J.E. Kamienkowski, M. Sigman, D. Fernandez Slezak, “CUDAICA: GPU optimization of Infomax-ICA EEG analysis,” Comput Intell Neurosci, vol. 2012, 206972, 2012.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Ing Biomed. 2015;36