medigraphic.com
SPANISH

Revista Cubana de Investigaciones Biomédicas

ISSN 1561-3011 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2015, Number 2

<< Back Next >>

Rev Cubana Invest Bioméd 2015; 34 (2)

Considerations about the definition of a patient specific model of the tibia

González CRA, Ortiz PA, Jacobo AVH, Cisneros HYA, Morales AL
Full text How to cite this article

Language: Spanish
References: 20
Page: 157-167
PDF size: 297.69 Kb.


Key words:

patient specific model, finite elements, mesh density, orthopedic biomechanics.

ABSTRACT

Introduction: finite element analysis is used to understand and predict biological processes. In orthopedic biomechanics patient specific models are generated by computed tomography and used for medical decision making. Some corrective orthopedic processes may be simulated by means of finite element analysis. In order to obtain reliable biomechanical models it is highly advisable to reduce the number of errors in the definition of the model during pre-processing of the finite element analysis.
Objective: analyze the influence of mesh density and mechanical properties on the results obtained by finite element analysis during the stage of definition of the patient specific model.
Methods: the finite element method was used to simulate tibial compression. The geometry of the patient’s tibia was generated by computed tomography. Meshes were used with non-uniform and uniform element sizes. Homogeneous and nonhomogeneous mechanical properties were applied to the model.
Results: low-order elements converge to the solution. Tensions for meshes with these elements are lower than those for meshes with uniform size and high-order elements. On the other hand, non-homogeneous mechanical properties reduce the difference in the estimation of tensions.
Conclusions: to obtain reliable patient specific models it is recommended to generate the bone geometry with softened surfaces, control the quality of the surface mesh, use non-homogeneous mechanical properties, and use the mesh generated directly on Abaqus with low-order elements and non-uniform size.


REFERENCES

  1. Agnihotri G, Rath G, Kullar J, Singla R, Suri R, Gandhi S, et al. Human tibial torsion - Morphometric assessment and clinical relevance. Biomed J. 2014 Feb;37(1):10-3.

  2. González Carbonell RA, Álvarez García E, Moya Rodríguez J. Tacón de Torque para uso Ortopédico: Propuesta de un Nuevo Diseño. En: Folgueras Méndez J, Aznielle Rodríguez TY, Calderón Marín CF, Llanusa Ruiz SB, Castro Medina J, Vega Vázquez H, et al., editores. V Latin American Congress on Biomedical Engineering CLAIB 2011. IFMBE Proceedings. Berlín: Springer; 2013. p. 912-5.

  3. Davids JR, Davis RB, Jameson LC, Westberry DE, Hardin JW. Surgical management of persistent intoeing gait due to increased internal tibial torsion in children. J Pediatr Orthop. 2014 Jun;34(4):467-73. doi: 10.1097/BPO.0000000000000173.

  4. González Carbonell RA, Ortiz Prado A, Jacobo Armendáriz VH, Cisneros Hidalgo YA, Alpízar Aguirre A. 3D patient specific model of the tibia from CT for orthopedic use. J Orthop. 2015 Mar;12(1):11-6.

  5. González Carbonell RA, Nápoles Padrón E, Claderín Pérez B, Hidalgo Cisneros YA, Landín Sorí M. Carácter interdisciplinario de la modelación computacional en la solución de problemas de salud. Hum Med. 2014 Sep-Dic;14(3):646-58.

  6. González Carbonell RA, Ortiz Prado A, Cisneros Hidalgo YA, Alpízar Aguirre A. Bone remodeling simulation of subject-specific model of tibia under torque. En: Braidot A, Hadad A, editores. VI Latin American Congress on Biomedical Engineering CLAIB 2014. IFMBE Proceedings. Berlín: Springer; 2015. p. 446-9.

  7. Cisneros Hidalgo YA, González Carbonell RA, Ortiz Prado A, Jacobo Almendáriz VH, Puente Álvarez A. Modelo mecanobiológico de una tibia humana para determinar su respuesta ante estímulos mecánicos externos. Rev Cubana Invest Bioméd [revista en la Internet]. 2015 Mar [citado 7 Feb 2015];34(1):54-63. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864- 03002015000100006&lng=es .

  8. Cisneros Hidalgo YA, González Carbonell RA, Puente Alvarez A, Camue Corona E, Oropesa Rodríguez Y. Generación de imágenes tridimensionales: integración de tomografía computarizada y método de los elementos finitos. Rev Cubana Invest Bioméd [revista en la Internet]. 2014 Sep [citado 7 Feb 2015];33(3):313-21. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864- 03002014000300007&lng=es .

  9. Djoudi F. 3D reconstruction of bony elements of the knee joint and finite element analysis of total knee prosthesis obtained from the reconstructed model. J Orthop. 2013 Dic;10(4):155-61.

  10. Eberle S, Göttlinger M, Augat P. An investigation to determine if a single validated density–elasticity relationship can be used for subject specific finite element analyses of human long bones. Med Eng Phys. 2013 Jul;35(7):875-83.

  11. Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M. Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech. 2007;40(13):2982-9.

  12. Lagravère M, Carey J, Ben-Zvi M, Packota G, Major P. Effect of object location on the density measurement and Hounsfield conversion in a NewTom 3G cone beam computed tomography unit. Dentomaxillofacial Radiology. 2008;37(6):305-8.

  13. Helgason B, Perilli E, Schileo E, Taddei F, Brynjólfsson S, Viceconti M, et al. Mathematical relationships between bone density and mechanical properties: A literature review. Clin Biomech. 2008;23(2):135-46.

  14. Soler Gracia C, Pastor JP, Jorge RL, Luna PV, Lacuesta JMS, Fuentes JVH, et al. Biomecánica de la marcha humana normal y patológica.[Internet]. Valencia: IBV. 2006 [citado 3 Feb 2015]. Disponible en: https://books.google.es/books/about/Biomec%C3%A1nica_de_la_marcha_humana_n ormal.html?hl=es&id=wkAcOwAACAAJ

  15. Schwartz MH, Rozumalski A, Trost JP. The effect of walking speed on the gait of typically developing children. J Biomech. 2008;41(8):1639-50.

  16. Wijnhoven TM, Van Raaij JM, Spinelli A, Rito AI, Hovengen R, Kunesova M, et al. WHO European childhood obesity surveillance initiative 2008: weight, height and body mass index in 6-9-year-old children. Pediatr Obes. 2013 Abr;8(2):79-97.

  17. Samson W, Dohin B, Desroches G, Chaverot JL, Dumas R, Cheze L. Foot mechanics during the first six years of independent walking. J Biomech [Internet]. 2011 [citado 20 Abr 2014];44(7):1321-7. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/21257173.

  18. Salo Z, Beek M, Whyne CM. Evaluation of mesh morphing and mapping techniques in patient specific modeling of the human pelvis. Int J Numer Meth Bio. 2013 Ene;29(1):104-13.

  19. Schileo E, Taddei F, Cristofolini L, Viceconti M. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech. 2008 Nov;41(2):356-67.

  20. Bright JA, Rayfield EJ. The response of cranial biomechanical finite element models to variations in mesh density. Anat Rec. 2011 Abr;294(4):610-20.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Invest Bioméd. 2015;34