medigraphic.com
SPANISH

Anales de Radiología, México

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2016, Number 1

<< Back Next >>

Anales de Radiología México 2016; 15 (1)

Bone metastases studied with positron emission tomography combined with simple tomography: epidemiological profile in relation to the primary tumor

Vivas-Mosquera L, Soto-Andonaegui J, Criales-Vera SA
Full text How to cite this article

Language: Spanish
References: 14
Page: 51-57
PDF size: 553.12 Kb.


Key words:

frequent, bone metastasis, bone, PET-CT, tumor.

ABSTRACT

Objetive: obtain an epidemiological profile of patients with neoplasms metastatic to bone, documented by positron emission tomography combined with simple tomography, in relation to the primary tumor.
Introduction: based on tomographic studies of patients with cancer metastatic to bone, we conducted a statistical analysis to obtain an epidemiological profile of bone metastases in relation to the primary tumor, frequency of compromise in each particular bone, and the presence of concomitant spread to other organs.
Material and Method: a descriptive study from a database of 250 patients with extraosseous primary neoplasm (132 men and 118 women), who were monitored or diagnosed by positron emission tomography combined with simple tomography. Patients with metastasis were selected to determine the epidemiological profile of bone metastases in relation to the primary tumor, compromise by bone, and the presence of metastatic compromise to other organs.
Results: metastasis to bone was found in 12.8% of the cases, occurring with greater relative frequency in hepatic carcinoma (2 of 4 cases), followed by prostate (33.3%), lung (25%), lymphoma (15%), breast (14.9%), pancreas (14.2%), esophagus (14.2%), and bladder (10%). Excluding cases of prostate or breast carcinoma, bone metastases were found in 8.4% of women and 10.1% of men with average ages of 60.5 and 74.1 years, respectively. The bone most commonly affected was the ilium (31%) followed by the vertebrae (27%). Concomitant extraosseous compromise was 76% to lymph nodes and 62% to other organs.
Discussion: The lower frequency of bone metastases (12.8% vs. 30- 85%) found may be due to the different clinical indications of positron emission tomography combined with simple tomography and bone gammagram; the latter is usually used in cases of direct suspicion of bone metastasis, and not the former.
Conclusions: we found a frequency of 12.8% of bone metastasis; usually bone compromise was greater in males (except cases of liver cancer and lymphoma). In more than half of the cases of tumoral disease with extension to bone there was also compromise of other organs.


REFERENCES

  1. Contreras N, Sosa R, Renner D. Metástasis óseas de primario desconocido. Médica Sur Sociedad de Médicos 2005;2:122-128.

  2. Bone Metastasis. American Cancer Society. http://www.cancer. org/acs/groups/cid/documents/webcontent/003087- pdf.pdf.

  3. Chirgwin JM, Mohammad KS, Guise TA. Tumor-bone cellular interactions in skeletal metastases. J Musculoskelet Neuronal Interact 2004;4(3):308-18.

  4. Baixauli F, Amaya J, Angulo M, Baeza J, Fernandez E, Mut T. Estado actual de las metástasis óseas. Revista Española de Cirugía Osteoarticular. 2014;257:1-3.

  5. Del Cura J, Pedraza S, Gayete A, Radiología Esencial. 1ra ed. Panamericana 2010;829-830.

  6. Gerwin P, Schmidt & Maximilian F. Reiser & Andrea Baur-Melnyk. Whole-body imaging of the musculoskeletal system: the value of MR imaging: Skeletal Radiol. 2007;36:1109–1119.

  7. Tryciecky EW, Gottschalk A, Ludema K. Oncologic imaging: interactions of nuclear medicine with CT and MRI using bone scan as a model. Semin Nucl Med. 1997;27:142–51.

  8. Martínez-Rodríguez I, Sainz-Esteban A, Quirce R, Banzo I, Jiménez-Bonilla JF, Barragán J, et al. Comparison of 18F-FDG PET/CT and 99mTc-DPD bone scan for detection of bone metastases. Eur J Nucl Med. 2008;35:S261.

  9. Quirce R, Banzo I, Jiménez-Bonilla JF, Martínez-Rodríguez I, Sainz-Esteban A, Carril JM. Potenciales fuentes de error diagnóstico y variantes de la FDGPET/TAC. Rev Esp Med Nucl. 2008;27:130–59.

  10. Borrego I, Vazquez-Albertino R. Propuesta de algoritmo diagnóstico del uso de la PET-18F-FDG en el cáncer de pulmón. Rev Esp Med Nucl. 2009;28:167–72.

  11. Maffioli L, Florimonte L, Pagani L, Butti I, Roca I. Current role of bone scan with phosphonates in the follow-up of breast cancer.Eur J Nucl Med.2004;31(Suppl 1):143-8.

  12. Hamaoka T, Madewell J, Podoloff D, Hortobagyi G, Ueno N. Bone imaging in metastasic breast cáncer. J Clin Oncol. 2004;15:2942-53.

  13. Tritz DB, Doll DC, Riengnberg QS, Anderson S, Madsen R, Perry MC, et al. Bone marrow involvement in small cell lung cancer. Clinical significance and correlation with routine laboratory variables. Cancer. 1989;63:763–6.

  14. Trillet V, Revel D, Combaret V, Favrot M, Loire R, Tabib A, et al. Bone marrow metastases in small cell lung cancer: detection with magnetic resonance imaging and monoclonal antibodies. Br J Cancer. 1989;69:83–8.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Anales de Radiología México. 2016;15