medigraphic.com
SPANISH

Revista Mexicana de Cardiología

ISSN 0188-2198 (Print)
En 2019, la Revista Mexicana de Cardiología cambió a Cardiovascular and Metabolic Science

Ver Cardiovascular and Metabolic Science


  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2016, Number S3

<< Back Next >>

Rev Mex Cardiol 2016; 27 (S3)

Evaluating geometric saturation pressure of carbon dioxide and oxygen in venous gases

Valdés-Cadena C, Rodríguez-Velásquez J, Prieto-Bohórquez S, Correa-Herrera C, Oliveros-Rodríguez H, Leyva-Rojas A, Bautista-Mesa J, Medina-Araújo S, Ramírez J, Soracipa-Muñoz Y
Full text How to cite this article

Language: Spanish
References: 37
Page: 103-109
PDF size: 250.07 Kb.


Key words:

Venous gas, nonlinear systems, venous oxygen saturation, venous oxygen pressure, venous carbon dioxide pressure.

ABSTRACT

Background: The chaotic behavior of normal and acute cardiac dynamics has been evaluated correctly for 16 hours in the context of the theory of dynamical systems and fractal geometry. Objective: To establish a new mathematical and geometric measure to characterize venous oxygen saturation (SvO2), venous oxygen pressure (PvO2) and venous carbon dioxide pressure (PvCO2), in the context of dynamic systems theory. Material and methods: The values ​​of the SvO2, the PvO2 and the PvCO2 were taken from the clinical reports of gases from 10 patients to build chaotic attractors on the delay map, then the minimum and maximum values ​​of the entire attractor were calculated. Results: The minimum and maximum values ​​of the attractors of venous oxygen saturation, oxygen venous pressure and carbon dioxide venous pressure varied between 49.30 and 99.80%, 26.10 and 96.40 mmHg, 27.60 and 57.80 mmHg, respectively. Conclusions: Chaotic behavior of the hemodynamic variables was observed, which was measured from the minimum and maximum values ​​for each attractor thus establishing a new mathematical, geometrical and physical measurement to assess these three hemodynamic variables of interest in the Intensive Care Unit.


REFERENCES

  1. Feynman R, Leighton R, Sands M. Física Vol. 3. Wilmington: Addison-Wesley Iberoamericana, S. A; Leyes de Newton de la Dinámica; Capítulo 9, 1987, pp. 9-1-9-14.

  2. Peitgen H, Jurgens H, Saupe D. Chaos and fractals; new frontiers of science. New York: Springer; 1992.

  3. Devaney R. A first course in chaotic dynamical systems theory and experiments. Reading Massachusetts: Addison-Wesley; 1992.

  4. Mandelbrot B. The fractal geometry of nature. Barcelona: Freeman, Tusquets Eds S.A.; 1972.

  5. Falconer K. Fractal geometry. Mathematical foundations and applications. West Sussex: John Wiley & Sons Ltd; 2003.

  6. Ayres S, Holbrook P, Shoemaker W. Tratado de medicina crítica y terapia intensiva. 4ª edición. Bogotá: Editorial médica panamericana; 2000.

  7. Acevedo L, Solarte L. Gasimetría arterial en adultos jóvenes a nivel del mar. Acta Médica Colombiana. 1984; 9 (1): 7-14.

  8. Goldberger AL, Amaral LA, Hausdorff JM, Ivanov PCH, Peng CK, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA. 2002; 99 (Suppl. 1): 2466-2472.

  9. Huikuri HV, Mäkikallio T, Peng CK, Goldberger AL, Hintze U, Møller M et al. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after and acute myocardial infarction. Circulation. 2000; 101 (1): 47-53.

  10. Rodríguez J, Prieto S, Avilán N, Correa C, Bernal P, Ortiz L et al. Nueva metodología física y matemática de evaluación del Holter. Rev Colomb Cardiol. 2008; 15: 50-54.

  11. Rodríguez J. Mathematical law of chaotic cardiac dynamic: predictions of clinic application. J Med Med Sci. 2011; 2 (8): 1050-1059.

  12. Rodríguez J, Prieto S, Bernal P, Soracipa Y, Salazar G, Isaza D et al. Nueva metodología de ayuda diagnóstica de la dinámica geométrica cardiaca dinámica cardiaca caótica del holter. Rev Acad Colomb Cienc. 2011; 35 (134): 5-12.

  13. Rodríguez J, Prieto S, Correa C, Oliveros H, Soracipa Y, Amaya J et al. Sistemas dinámicos aplicados a la disminución del tiempo de diagnóstico de la dinámica cardiaca de 24 a 16 horas en holter y registros electrocardiográficos continuos. X Congreso de Medicina Crítica y Cuidado Intensivo. Cartagena, Colombia. 2015.

  14. Rodríguez J, Prieto S, Correa C, Bautista J, Velasco A, Méndez et al. Mathematics physical assessment of cardiac dynamics based on theory of probability and proportions of entropy in the intensive care unit for patients with arrhythmia. J Nucl Med Radiat Ther. 2015; 6: 4.

  15. Awasthi S, Rani R, Malviya D. Peripheral venous blood gas analysis: An alternative to arterial blood gas analysis for initial assessment and resuscitation in emergency and intensive care unit patients. Anesth Essays Res. 2013; 7 (3): 355-358.

  16. Razi E, Nasiri O, Akbari H, Razi A. Correlation of arterial blood gas measurements with venous blood gas values in mechanically ventilated patients. Tanaffos. 2012; 11 (4): 30-35.

  17. Masip J, De Mendoza D, Planas K, Paez J, Sanchez B, Cancio B. Peripheral venous blood gases and pulse-oximetry in acute cardiogenic pulmonary oedema. Eur Heart J Acute Cardiovasc Care. 2012; 1 (4): 275-280.

  18. Treger R, Pirouz S, Kamangar N, Corry D. Agreement between central venous and arterial blood gas measurements in the intensive care unit. Clin J Am Soc Nephrol. 2010; 5 (3): 390-394.

  19. Baird G. Preanalytical considerations in blood gas analysis. Biochem Med (Zagreb). 2013; 23 (1): 19-27.

  20. Küme T, Rıza A, Solak A, Tuğlu B, Çinkooğlu B, Çoker C. The effects of different syringe volume, needle size and sample volume on blood gas analysis in syringes washed with heparin. Biochem Med (Zagreb). 2012; 22 (2): 189-201.

  21. Rodríguez J, Prieto S, Domínguez D, Correa C, Melo M, Pardo J et al. Application of the chaotic power law to cardiac dynamics in patients with arrhythmias. Rev Fac Med. 2014; 62 (4): 539-546.

  22. Rodríguez J, Correa C, Melo M, Domínguez, D, Prieto S, Cardona DM et al. Chaotic cardiac law: Developing predictions of clinical application. J Med Med Sci. 2013; 4 (2): 79-84.

  23. Rodríguez J, Prieto S, Flórez M, Alarcón C, López R, Aguirre G et al. Physical-mathematical diagnosis of cardiac dynamic on neonatal sepsis: predictions of clinical application. J Med Med Sci. 2014; 5 (5): 102-108.

  24. Rodríguez J, Prieto S, Domínguez D, Melo M, Mendoza F, Correa C et al. Mathematical-physical prediction of cardiac dynamics using the proportional entropy of dynamic systems. J Med Med Sci. 2013; 4 (8): 370-381.

  25. Rodríguez J, Prieto S, Correa C, Soracipa Y, Aguirre G, Méndez L. Proportional entropy applied to the clinical diagnostic of cardiac dynamic: blind study with 600 holter. The 61st Annual Conference of the Israel Heart Society in association with The Israel Society of Cardiothoracic Surgery; 2014; Israel.

  26. Rodríguez J, Prieto S, Bernal P, Izasa D, Salazar G, Correa C et al. Entropía proporcional aplicada a la evolución de la dinámica cardiaca Predicciones de aplicación clínica. En: La emergencia de los enfoques de la complejidad en América Latina. Tomo I. Argentina: Comunidad del Pensamiento complejo; 2015, pp. 247-264.

  27. Rodríguez J. Método para la predicción de la dinámica temporal de la malaria en los municipios de Colombia. Rev Panam Salud Pública. 2010; 27 (3): 211-218.

  28. Rodríguez J, Vitery S, Puerta G, Muñoz D, Rojas I, Pinilla L et al. Dinámica probabilista temporal de la epidemia de dengue en Colombia. Rev Cubana Hig Epidemiol. 2011; 49 (1): 74-83.

  29. Rodríguez J, Prieto S, Correa C, Pérez C, Mora J, Bravo J et al. Predictions of CD4 lymphocytes’ count in HIV patients from complete blood count. BMC Medical Physics. 2013; 13: 3.

  30. Rodríguez J, Prieto S, Melo Martha, Domínguez D, Correa C, Soracipa Y et al. Predicción del número de linfocitos T CD4 en sangre periférica a partir de teoría de conjuntos y probabilidad en pacientes con VIH/SIDA. Inmunología. 2014; 33: 113-120.

  31. Rodríguez J, Bernal P, Álvarez L, Pabón S, Ibáñez S, Chapuel N et al. Predicción de unión de péptidos de MSP-1 y EBA-140 de plasmodium falciparum al HLA clase II Probabilidad, combinatoria y entropía aplicadas a secuencias peptídicas. Inmunología. 2010; 29 (3): 91-99.

  32. Rodríguez J, Bernal P, Prieto S, Correa C. Teoría de péptidos de alta unión de malaria al glóbulo rojo. Predicciones teóricas de nuevos péptidos de unión y mutaciones teóricas predictivas de aminoácidos críticos. Inmunología. 2010; 29 (1): 7-19.

  33. Rodríguez J, Prieto S, Correa C, Bernal P, Puerta G, Vitery S et al. Theoretical generalization of normal and sick coronary arteries with fractal dimensions and the arterial intrinsic mathematical harmony. BMC Medical Physics. 2010; 10: 1.

  34. Prieto s, Rodríguez J, Correa C, Soracipa Y. Diagnosis of cervical cells based on fractal and Euclidian geometrical measurements: Intrinsic Geometric Cellular Organization. BMC Med Phy. 2014; 14: 2.

  35. Velásquez J, Prieto S, Correa C, Dominguez D, Velásquez DM, Melo M. Geometrical nuclear diagnosis and total paths of cervical cell evolution from normality to cancer. J Cancer Res Ther. 2015; 11 (1): 98-104.

  36. Correa C, Rodríguez J, Prieto S, Álvarez L, Ospino B, Munévar A et al. Geometric diagnosis of erythrocyte morphophysiology. J Med Med Sci. 2012; 3 (11): 715-720.

  37. Rodríguez J, Prieto S, Correa S, Mejía M, Ospino B, Munevar Á et al. Simulación de estructuras eritrocitarias con base en la geometría fractal y euclidiana. Archivos de Medicina Umanizales. 2014; 14 (2): 276-284.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Cardiol. 2016;27