medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2017, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2017; 20 (1)

Structure-function studies of the alpha pheromone receptor from yeast

Robles LM, Millán-Pacheco C, Pastor N, Del Río G
Full text How to cite this article

Language: English
References: 56
Page: 16-26
PDF size: 407.06 Kb.


Key words:

alpha pheromone receptor, docking, molecular modeling, pheromone, Ste2p.

ABSTRACT

Ste2p is a G protein-coupled receptor (GPCR) in Saccharomyces cerevisiae that mediates mating by responding to the alpha-mating factor pheromone. Ste2p belongs to a subfamily of GPCRs with no global sequence similarity to GPCRs of known atomic three-dimensional structure, yet it shares functional similarities with many of these. To deepen our understanding of the structure-function relationship of this receptor, we built an atomic threedimensional homology-based model of Ste2p that was used to simulate the docking of the alpha pheromone. The Ste2p model is in general agreement with the available experimental data and allowed us to propose that the interface between Ste2p and alpha pheromone is formed by 26 residues, most of which are polar residues located at the three extracellular loops and helices HI, H5, and H6. This interface does not include Ile190, a highly conserved residue among fungal species, located at the second extracellular loop and therefore a potential binding site residue. By performing mutagenesis of STE2 at this position we observed only a small effect of this residue in receptor signaling. Hence, the Ste2p model presented here is consistent in general with current experimental data and constitutes a framework to test hypothesis about the structure-function relationship of this receptor.


REFERENCES

  1. Lundstrom, K. An overreview on GPCRs and drug discovery: structure-based drug design and structural biology on GPCRs. Methods Mol. Biol. 552, 51-66 (2009). DOI: 10.1007/978-1- 60327-317-6_4

  2. Rosenbaum, D.M., Rasmussen, S. G.F. & Kobilka, B.K. The structure and function of G-protein-coupled receptors. Nature, 459(7245), 356-363 (2009). DOI: 10.1038/nature08144

  3. Mackay, V. & Manney, T.R. Mutations affecting sexual conjugation and related processes in Saccharomyces cerevisiae. I. Isolation and phenotypic characterization of nonmating mutants. Genetics, 76(2), 255-271 (1974).

  4. Hartwell, L.H. Mutants of Saccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormone. J. Cell Biol. 85, 811–822 (1980).

  5. Jenness, D.D., Burkholder, A.C., & Hartwell, L.H. Binding of α-factor pheromone to yeast a cells: chemical and genetic evidence for an α-factor receptor. Cell, 35(2), 521-529 (1983).

  6. Burkholder, A.C. & Hartwell, L.H. The yeast α-factor receptor: Structural properties deduced from the sequence of the STE2 gene. Nucleic Acids Res. 13, 8463–8475 (1985).

  7. Neumoin, A., Cohen, L.S., Arshava, B., Tantry, S., Becker, J. M., Zerbe, O. & Naider, F. Structure of a double transmembrane fragment of a G-protein-coupled receptor in micelles. Biophysical Journal,96(8), 3187-3196 (2009). DOI: 10.1016/j.bpj.2009.01.012

  8. Valentine, K.G., Liu, S.F., Marassi, F.M., Veglia, G., Opella, S.J., Ding, F.X., & Naider, F. Structure and topology of a peptide segment of the 6th transmembrane domain of the Saccharomyces cerevisae alphafactor receptor in phospholipid bilayers. Biopolymers, 59(4), 243- 256 (2001). DOI: 10.1002/1097-0282(20011005)59:4<243::AIDBIP1021> 3.0.CO;2-H.

  9. Uddin, M.S., Kim, H., Deyo, A., Naider, F. & Becker, J.M. Identification of residues involved in homodimer formation located within a β-strand region of the N-terminus of a Yeast G proteincoupled receptor. Journal of Receptors and Signal Transduction Research32(2), 65-75 (2012). DOI: 10.3109/10799893.2011.647352.

  10. Overton, M.C. & Blumer K.J. The extracellular N-terminal domain and transmembrane domains 1 and 2 mediate oligomerization of a yeast G protein-coupled receptor. Journal of Biological Chemistry, 277(44), 41463-41472 (2002). DOI: 10.1074/jbc.M205368200.

  11. Schandel, K.A. & Jenness, D.D. Direct evidence for ligand-induced internalization of the yeast α-factor pheromone receptor. Mol. Cell. Biol. 14, 7245-7255 (1994).

  12. Hicke, L. & Riezman, H. Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84(2), 277-87 (1996).

  13. Rohrer, J., Benedetti, H., Zanolari, B. & Riezman, H. Identification of a novel sequence mediating regulated endocytosis of the G protein-coupled α-pheromone receptor in yeast. Mol. Biol. Cell 4, 511-521 (1993).

  14. Stefan, C.J. & Blumer, K.J. The third cytoplasmic loop of a yeast G-protein-coupled receptor controls pathway activation, ligand discrimination, and receptor internalization. Mol Cell Biol. 14(5), 3339-3349 (1994).

  15. Hauser, M., Kauffman, S., Lee, B.-K., Naider, F. & Becker, J.M. The first extracellular loop of the Saccharomyces cerevisiae G protein-coupled receptor Ste2p undergoes a conformational change upon ligand binding. Journal of Biological Chemistry, 282(14), 10387-10397 (2007). DOI: 10.1074/jbc.M608903200

  16. Akal-Strader, A., Khare, S., Xu, D., Naider F. & Becker, J.M. Residues in the first extracellular loop of a G protein-coupled receptor play a role in signal transduction. J. Biol. Chem. 277(34), 30581-30590 (2002). DOI: 10.1074/jbc.M204089200.

  17. Lee, B.K., Khare, S., Naider, F. & Becker, J.M. Identification of residues of the Saccharomyces cerevisiae G protein-coupled receptor contributing to alpha-factor pheromone binding. J. Biol. Chem. 276(41), 37950-37961 (2001). DOI: 10.1074/jbc. M103579200.

  18. Lin, J.C., Parrish, W., Eilers, M., Smith, S.O. & Konopka J.B. Aromatic residues at the extracellular ends of transmembrane domains 5 and 6 promote ligand activation of the G protein-coupled alpha-factor receptor. Biochemistry, 42(2), 293-301 (2003). DOI: 10.1021/bi026766o.

  19. Son, C.D., Sargsyan, H., Naider, F. & Becker, J.M. Identification of ligand binding regions of the Saccharomyces cerevisiae alpha-factor pheromone receptor by photoaffinity cross-linking. Biochemistry, 43(41), 13193-13203 (2004). DOI: 10.1021/bi0496889

  20. Choi, Y. & Konopka, J.B. Accessibility of cysteine residues substituted into the cytoplasmic regions of the alpha-factor receptor identifies the intracellular residues that are available for G protein interaction. Biochemestry 45(51), 15310-15317 (2006). DOI: 10.1021/bi0614939.

  21. Shi L. & Javitch J.A., The second extracellular loop of the dopamine D2 receptor lines the binding-site crevice. Proc. Natl. Acad. Sci. USA, 101(2), 440-445 (2004). DOI: 10.1073/pnas.2237265100.

  22. Mazna, P., Berka, K., Jelinkova, I., Balik, A., Svoboda, P., Obsilova, V., Obsil, T. & Teisinger, J. Ligand binding to the human MT2 melatonin receptor: the role of residues in transmembrane domains 3, 6, and 7. Biochem. Biophys. Res. Commun. 332(3), 726-734 (2005). DOI: 10.1016/j.bbrc.2005.05.017

  23. Kleinau, G. & Krause, G. Thyrotropin and homologous glycoprotein hormone receptors: structural and functional aspects of extracellular signaling mechanisms. Endocr. Rev. 30(2), 133-151 (2009). DOI: 10.1210/er.2008-0044

  24. Unal, H., Jagannathan, R., Bhat, M.B. & Karnik, S.S. Ligandspecific conformation of extracellular loop-2 in the angiotensin II type 1 receptor. J. Biol. Chem. 285(21), 16341–16350 (2010). DOI: 10.1074/jbc.M109.094870.

  25. Wifling, D., Bernhardt, G., Dove, S., Buschauer, A., Peeters, M., Westen, G. van, Li, Q., AP, I., Wheatley, M., Wootten, D., Conner, M., Simms, J., Kendrick, R., Massotte, D., Kieffer, B., Klco, J., Wiegand, C., Narzinski, K., Baranski, T., Sum, C., Tikhonova, I., Costanzi, S., Gershengorn, M., Nanevicz, T., Wang, L., Chen, M., Ishii, M., Coughlin, S., Scarselli, M., Li, B., Kim, S., Wess, J., Brunskole, I., Strasser, A., Seifert, R., Buschauer, A., Wifling, D., Löffel, K., Nordemann, U., Strasser, A., Bernhardt, G., Davidson, F., Loewen, P., Khorana, H., Shi, L., Javitch, J., Noda, K., Saad, Y., Graham, R., Karnik, S., Cook, J., Eidne, K., Shi, L., Javitch, J., Avlani, V., Gregory, K., Morton, C., Parker, M., Sexton, P., Lefkowitz, R., Cotecchia, S., Samama, P., Costa, T., Milligan, G., Seifert, R., Wenzel-Seifert, K., Lee, T., Gether, U., Sanders-Bush, E., Schnell, D., Brunskole, I., Ladova, K., Schneider, E., Igel, P., Seifert, R., Strasser, A., Schneider, E., Neumann, D., Dove, S., Lim, H., Jongejan, A., Bakker, R., Haaksma, E., Esch, I. de, Haga, K., Kruse, A., Asada, H., Yurugi-Kobayashi, T., Shiroishi, M., Rasmussen, S., Choi, H., Fung, J., Pardon, E., Casarosa, P., Shimamura, T.; Shiroishi, M., Weyand, S., Tsujimoto, H., Winter, G., Schneider, E., Schnell, D., Papa, D., Seifert, R., Igel, P., Geyer, R., Strasser, A., Dove, S., Seifert, R., Igel, P., Schneider, E., Schnell, D., Elz, S., Seifert, R., Lange, J., Wals, H., Vandenhoogenband, A., Vandekuilen, A., Denhartog, J., Jablonowski, J., Grice, C.,Chai, W., Dvorak, C., Venable, J., Lim, H., Smits, R., Bakker, R., Dam, C. van, Esch, I. de; Schmutz, J.;, Kuenzle, G., Hunziker, F.,Gauch, R., Smits, R., Lim, H., Stegink, B., Bakker, R., Esch, I. de, Gether, U., Lin, S., Kobilka, B., Cheng, Y., Prusoff, W., Schneider, E., Schnell, D., Strasser, A., Dove, S., Seifert, R., Kooistra, A., Kuhne, S., Esch, I. de, Leurs, R., Graaf, C. de, Lim, H., Graaf, C. de, Jiang, W., Sadek, P., McGovern, P., Schultes, S., Nijmeijer, S., Engelhardt, H., Kooistra, A., Vischer, H., Wittmann, H.-J., Seifert, R., Strasser, A., Alewijnse, A., Timmerman, H., Jacobs, E., Smit, M., Roovers, E., Ballesteros, J. & Weinstein, H. The Extracellular Loop 2 (ECL2) of the Human Histamine H 4 Receptor Substantially Contributes to Ligand Binding and Constitutive Activity. PloS One, 10(1), e0117185 (2015). DOI: 10.1371/journal.pone.0117185.

  26. Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J. & Zhang, Y. The I-TASSER Suite: protein structure and function prediction. Nature Methods, 12(1), 7-8 (2015). DOI: 10.1038/nmeth.3213

  27. Eilers, M., Hornak, V., Smith, S.O. & Konopka, J.B. Comparison of Class A and D G Protein-Coupled Receptors: Common Features in Structure and Activation. Biochemistry 2005, 44, 8959-8975 (2005). DOI: 10.1021/bi047316u

  28. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M. & Miyano, M. Crystal structure of rhodopsin: AG protein-coupled receptor. Science, 289(5480), 739-745 (2000).

  29. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N.,Weissig, H., Shindyalov, I.N. & Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 28(1), 235-242 (2000). DOI: 10.1093/ nar/28.1.235.

  30. Maupetit, J., Derreumaux, P. & Tufféry, P. A fast method for largescale de novo peptide and miniprotein structure prediction. J. Comput. Chem. 31(4), 726-738 (2010).DOI: 10.1002/jcc.21365.

  31. Higashijima, T., Masui, Y., Chino, N., Sakakibara, S., Kita, H. & Miyazawa, T. Nuclear-magnetic-resonance studies on the conformations of tridecapeptide alpha-mating factor from yeast Saccharomyces cerevisiae and analog peptides in aqueous solution. Conformation-activity relationship. Eur. J. Biochem. 140(1), 163–171 (1984).

  32. Comeau, S.R., Gatchell, D.W., Vajda, S. & Camacho, C.J. ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics, 20(1), 45-50 (2004).

  33. Naider, F., Becker, J.M., Lee, Y.H. -& Horovitz, A. Double-mutant cycle scanning of the interaction of a peptide ligand and its G protein-coupled receptor. Biochemistry, 46(11), 3476-3481 (2007). DOI: 10.1021/bi602415u.

  34. Umanah, G.K.E., Huang, L., Ding, F., Arshava, B., Farley, A.R., Link, A.J., Naider, F. & Becker, J.M. Identification of residue-toresidue contact between a peptide ligand and its G protein-coupled receptor using periodate-mediated dihydroxyphenylalanine crosslinking and mass spectrometry. J. Biol. Chem., 285(50), 39425- 39436 (2010). DOI: 10.1074/jbc.M110.149500.

  35. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. & Karplus, M. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4(2), 187-217 (1983). DOI: 10.1002/jcc.540040211.

  36. Schrodinger, L.L.C. The PyMOL Molecular Graphics System, Version 1.8 https://www.pymol.org/.

  37. Chen, D.C., Yang, B.C. & Kuo, T.T. One-step transformation of yeast in stationary phase. Current Genetics, 21(1), 83-84 (1992).

  38. Russ, W. & Engelman, D. The GxxxG motif: a framework for transmembrane helix-helix association. J. Mol. Biol., 296(3), 911-919 (2000). DOI: 10.1006/jmbi.1999.3489

  39. Zhou, F.X., Cocco, M.J., Russ, W.P., Brunger, A.T. & Engelman, D.M. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nat. Struct. Biol., 7(2), 154-160 (2000). DOI: 10.1038/72430

  40. Cohen, G.B., Yang, T., Robinson, P.R. & Oprian, D.D. Constitutive activation of opsin: influence of charge at position 134 and size at position 296. Biochemistry 32, 6111-6115 (1993).

  41. Kim, J.M., Altenbach, C., Thurmond, R.L., Khorana, H.G. & Hubbell, W.L. Structure and function in rhodopsins rhodopsin mutants with a neutral amino acid at E134 have a partially activated conformation in the dark state. Proc. Natl. Acad. Sci. U.S.A. 94(26), 14273-14278 (1997).

  42. Parrish, W., Eilers, M., Ying, W. & Konopka, J.B. The cytoplasmic end of transmembrane domain 3 regulates the activity of the Saccharomyces cerevisiae G-protein-coupled alpha-factor receptor. Genetics 160, 429-443 (2002).

  43. Karnik, S., Gogonea, C., Patil, S., Saad, Y. & Takezako, T. Activation of G-protein-coupled receptors: a common molecular mechanism. Trends Endocrinol. Metab., 14(9), 431-437 (2003).

  44. Ji, T.H., Grossmann, M. & Ji, I. G protein-coupled receptors. I. Diversity of receptor–ligand interactions. J. Biol. Chem. 273(28), 17299-17302 (1998).

  45. Bajaj, A., Connelly, S., Gehret, A., Naider, F., Dumont, M. Role of extracellular charged amino acids in the yeast α-factor receptor. Biochim. Biophys. Acta (BBA)-Molecular Cell Research, 1773(6), 707-717 (2007). DOI: 10.1016/j.bbamcr.2007.02.002

  46. Celić, A., Martin, N.P., Son, C.D., Becker, J.M., Naider, F. & Dumont, M.E. Sequences in the intracellular loops of the yeast pheromone receptor Ste2p required for G protein activation. Biochemistry, 42(10), 3004-3017 (2003). DOI: 10.1021/ bi0269308.

  47. Henry, L.K., Khare, S., Son, C., Babu, V.V.S., Naider, F. & Becker, J.M. Identification of a contact region between the tridecapeptide alpha-factor mating pheromone of Saccharomyces cerevisiae and its G protein-coupled receptor by photoaffinity labeling. Biochemistry 41(19), 6128-6139 (2002).

  48. Clark, C.D., Palzkill, T. & Botstein, D. Systematic mutagenesis of the yeast mating pheromone receptor third intracellular loop. Journal of Biological Chemistry, 269(12), 8831-8841 (1994).

  49. Bogann, A. & Thorn, K. Anatomy of hot spots in protein interfaces. Journal of Molecular Biology, 280(1), 1-9 (1998).

  50. Abel, M., Lee, B., Naider, F. & Becker, J. Mutations affecting ligand specificity of the G-protein-coupled receptor for the Saccharomyces cerevisiae tridecapeptide pheromone. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1448(1), 12-26 (1998).

  51. Dosil, M., Giot, L., Davis, C. & Konopka, J.B. Dominant-negative mutations in the G-protein-coupled R-factor receptor map to the extracellular ends of the transmembrane segments. Mol. Cell. Biol. 18, 5981-5991 (1998).

  52. Ding, F.X., Lee, B.K., Hauser, M., Davenport, L., Becker, J.M., & Naider, F. Probing the binding domain of the Saccharomyces cerevisiae alpha-mating factor receptor with fluorescent ligands. Biochemistry, 40(4), 1102-1108 (2001).

  53. Lin, J.C., Duell, K. & Konopka, J.B. A microdomain formed by the extracellular ends of the transmembrane domains promotes activation of the G protein-coupled alpha-factor receptor. Molecular and Cellular Biology, 24(5), 2041-2051 (2004).

  54. Guharoy, M. & Chakrabarti, P. Conservation and relative importance of residues across protein-protein interfaces. Proc. Natl. Acad. Sci.U.S.A., 102(43), 15447-15452 (2005). DOI: 10.1073/ pnas.0505425102

  55. Caffrey, D.R., Somaroo, S., Hughes, J.D., Mintseris, J. & Huang, E.S. Are protein–protein interfaces more conserved in sequence than the rest of the protein surface? Prot. Sci., 13(1), 190-202 (2004). DOI: 10.1110/ps.03323604.

  56. Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T. & Tramontano, A. Critical assessment of methods of protein structure prediction (CASP)--round x. 82 Suppl 2 (0 2), 1-6 (2014). DOI: 10.1002/prot.24452.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2017;20