medigraphic.com
SPANISH

Revista Mexicana de Neurociencia

Academia Mexicana de Neurología, A.C.
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Authors instructions        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2016, Number 5

<< Back Next >>

Rev Mex Neuroci 2016; 17 (5)

Cerebral microbleed as a manifestation of hyperleukocitosis in pediatric leukemia

Colomo PAL, Gómez GG, Cruz HJA
Full text How to cite this article

Language: Spanish
References: 16
Page: 107-115
PDF size: 849.35 Kb.


Key words:

Hyperleukocytosis, Leukemia, Microhaemorrhage, Cerebral MRI.

ABSTRACT

Introduction: Leukemia is the most common pediatric malignancy. The beginning of the disease is often non-specific, with a variety of signs and symptoms, commonly manifestated as fever, bleeding and fatigue. Hyperleukocytosis is defined as a cell count greater than 100,000/mm3 and could be the initial manifestation of leukemia in 10 to 18% of the cases and a risk factor for spontaneous bleeding in organs such as brain and lungs. MRI is the most sensitive imaging technique for the diagnosis of brain microhemorrhages since demonstrates the evolutionary characteristics of hematoma.
Case: A 15 year old female with a history of hypermenorrhea was detected with generalized lymphadenopathy, hepatosplenomegaly, a white blood cell count of 640,100/µL and positive leukemia specific antigens before her admission to the Institute. As part of the approach, a brain MRI was obtained showing multifocal lesions suggesting brain and cerebellar microhemorrhages on acute stage. Treatment was established with two sessions of leukapheresis, diminishing the cell count to 200,000/µL. In a control MRI performed 21 days later the microhaemorrhages became more apparent with typical signal characteristics of a late-subacute stage, without a significant change in volume.
Conclusion: The early recognition and management of pediatric leukemia hyperleukocytosis is essential to avoid serious and potentially fatal complications such as cerebral and lung hemorrhage. MRI is the study of choice for the diagnosis of brain microhaemorrhage in children, given that the varying sequences can characterize the changes of incipient bleeding in the parenchyma that are often subtle due to degradation products of hemoglobin at different stages, in addition to the lack of patient exposure to ionizing radiation.


REFERENCES

  1. Pérez-Saldívar M, Fajardo-Gutiérrez L, Bernaldéz-Ríos R. Chilhodhood acute leukemias are frecuent in México City: descriptive epidemiology. BMC Cancer. 2011:11;355–365.

  2. Mathers CD, Boschi-Pinto C, López A D, Murray CJ. Cancer incidence, mortality and survival by site for 14 regions of the world. En: Global Programme on Evidence for Health Policy Discussion. OMS. 2001:13

  3. Joseph R, Fines Robert E, Cerebral hemorrhage due to hyperleukocytosis. The Journal of Emergency Medicine. 2011:40 (6);674–677,

  4. Chu W, Lee V, Howard R, Roebuck D, Chik K, Li K. Imaging findings of Paediatric Oncology Patients Presenting with Acute Neurological Symptoms; Imaging Clinical Radiology. 2003:58;589–603

  5. Freireich EJ, Thomas LB, Frei E. A distinctive type of intracerebral hemorrhage associated with “blastic crisis” in patients with leukemia. Cancer. 1960: 13:146–154.

  6. Fritz RD, Forkner CE, Freireich RJ. The association of fatal intracranial hemorrhage and “blastic crisis” in patients with acute leukemia. N Engl J Med. 1959;261:59–64.

  7. Ringengerg QS, Doll DC. Acute nonlymphocytic leukemia. The first 48 hours. South Med J. 1990; 83: 931-40. En: Juárez-Caballero G, Cabrera-Muñoz M, Gallegos-Castorena S, Muñiz-Ronquillo T. Niño con leucemia no linfoblástica aguda e hiperleucocitosis. 2007; 64:50-58

  8. Koenig MK, Sitton C, Wang M, Slopis J. Central Nervous System Complications of Blastic Hyperleukocytosis in Childhood Acute Lymphoblastic Leukemia: Diagnostic and Prognostic Implications, J Child Neurol. 2008 November ; 23(11): 1347–1352

  9. Lowe Eric J, Pui CH, Hancock ML. Early complications in children with acute lymphoblastic leukemia presenting with hyperleukocytosis. Pediatr Blood Cancer. 2005; 45:10–15.

  10. Fazekas F, Kleinert R, Roob G, Kleinert G, Kapeller P, Schmidt R, Hartung HP. Histopathologic analysis of foci of signal loss on gradient-echo T2*- weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol. 1999;20:637–642

  11. Atlas SW, Mark AS, Grossman RI, Gomori JM. Intracranial hemorrhage: gradient-echo MR imaging at 1.5 T. Comparison with spin-echo imaging and clinical applications. Radiology. 1988;168:803– 807

  12. Anand Viswanathan, MD, Cerebral Microhemorrhage, Stroke; American Heart Association, Disponible en: http://stroke.ahajournals.org

  13. De Ocampo J, Susceptibility-Weighted Angiography of Intracranial Blood Products and Calcifications Compared to Gradient Echo Sequence; The Neuroradiology Journal. 2013;26:493- 500

  14. Beom Joon Kim, Seung-Hoon Leeb. Cerebral Microbleeds: Their Associated Factors, Radiologic Findings, and Clinical Implications. Journal of Stroke 2013;15(3):153-163

  15. Silvera S, Oppenheim C, Touze E, Ducreux D, Page P, Domigo V, et al. Spontaneous Intracerebral Hematoma on Diffusion-weighted Images: Influence of T2- shine-through and T2-blackout Effects. AJNR Am J Neuroradiol 2005;26:236–241

  16. Yates M, Villemagne V, Ellis KA, Desmond P, Masters C, Rowe C. Cerebral microbleeds: a review of clinical, genetic, and neuroimaging associations. Neur. 2013;4(250):2-12




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Neuroci. 2016;17