medigraphic.com
SPANISH

Revista Cubana de Plantas Medicinales

ISSN 1028-4796 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2016, Number 3

Next >>

Rev Cubana Plant Med 2016; 21 (3)

Chemical composition of essential oil of Ocotea cymbarum Kunth (cascarilla and/or sassafras) from the Orinoquía region

Delgado ÁWA, Cuca SLE, Caroprese JF
Full text How to cite this article

Language: Spanish
References: 23
Page: 248-260
PDF size: 291.08 Kb.


Key words:

lauraceae, Ocotea cymbarum, Ocotea barcellensis, Nectandra cymbarum, cascarilla oil, sassafras oil, micromolecular evolution.

ABSTRACT

Introduction: cascarilla and sassafras oils are sold in market places of some settlements in the Colombian and/or Venezuelan Orinoquía. These oils are used to alleviate conditions such as rheumatoid arthritis and respiratory disorders, and to treat the bites of insects and poisonous animals. The oils are obtained from the species Ocotea cymbarum Kunth, which displays abundant botanical synonymy as Alseodaphne cymbarum, Licaria cymbarum,Misanteca cymbarum, Nectandra barcellensis, Nectandra cymbarum, Nectandra elaiophora, Nectandra oleífera and Ocotea barcellensis.
Objective: carry out a comparative analysis of the physicochemical characteristics of essential oil of cascarilla and/or sassafras (Ocotea cymbarum Kunth).
Methods: the relative chemical composition of oils obtained from wood and bark was determined by gas chromatography coupled with mass spectrometry (GC-MS). Estimation and comparison of retention indices was conducted with orthogonal polarity columns. Comparison of electron impact mass spectra was performed with the databases NIST08.L and Wiley9.L.
Results: forty-five compounds were determined from the samples analyzed. More than 90% of the relative composition established for each oil corresponds to monoterpenic compounds, mainly camphor and alpha-terpineol. Analysis of the biosynthetic pathways leading to the generation of the main compounds detected in the oils studied, showed that the species from which the oils were obtained exhibit varying degrees of micromolecular evolution.
Conclusion: cascarilla and sassafras oils are obtained from plant species at varying stages of chemical evolution. This result constitutes additional evidence of the great biological diversity of the Lauraceae family.
The study was conducted with financial support from the Natural Plant Products Laboratory of the Chemistry Department at the National University of Colombia at Bogotá.


REFERENCES

  1. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Sistema de información sobre Biodiversidad de Colombia (SIB). [citado 20 mar 2015]. Disponible en: http://data.sibcolombia.net/inicio.htm.

  2. Universidad de los Andes.edu.co. Laboratorio de Botánica y sistemática. [citado 10 feb 2015]. Disponible en: http://botanica.uniandes.edu.co/investigacion/lauraceae.htm

  3. Acero Duarte LE. Plantas útiles de la cuenca del Orinoco. 2nd ed. Colombia: Zona Ediciones; 2007.

  4. Puentes de Díaz A., Bisnorneolignano de la madera de Ocotea simulans. Rev. Col. Quim. 1996;25(1-2):1-6.

  5. García Barriga H. Flora Medicinal de Colombia. 2nd ed. Vol. 1. Bogotá, Colombia: Editorial Tercer Mundo; 1992.

  6. Gupta MP. (Editor). Plantas Medicinales Iberoamericanas. Colombia: Quebecor World Bogotá; 2008.

  7. Palomino E, Maldonado C, Kempff MB, Ksebati MB. Caparratriene, an active sesquiterpene hydrocarbon from Ocotea caparrapi, J. Nat. Prod. 1996;59(1):77-9.

  8. Bandoni A. (Editor). Los Recursos Vegetales Aromáticos en Latinoamérica, su aprovechamiento industrial para la producción de aromas y sabores. Buenos Aires: Editorial de la Universidad Nacional de la Plata; 2000.

  9. Royal Botanic Gardens. Kew and Missouri Botanical Garden. [citado 12 Feb 2016]. Disponible en: http://www.theplantlist.org/tpl1.1/record/kew-2386431

  10. Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. Illinois: Allured Publishing Corporation, Carol Stream; 1995.

  11. Jennings W, Shibamoto T. Qualitative Analysis of Flavor and Fragance Volatiles by Glass Capillary Gas Chromatography. New York: Academic Press; 1980.

  12. Davis ED, Croteau R. Cyclation Enzymes in the Boisynthesis of Monoterpenes, sesquiterpenes, and Diterpenes: in Leedper FJ, and Vederas JC. 209 Topics in Current Chemistry Biosynthesis Aromatic Poliketides, Isoprenoids, Alkaloids. Germany: Springer; 2000.

  13. Degenhardt J, Köllner TG, Gershhenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemystry. 2009;70(15-16):1621-37.

  14. Hognadottir A, and Rouseff RL. Identification of aroma active compounds in orange essence oil using gas chromatography-olfactometry and gas chromatography - mass spectrometry, J. Chromatogr. A. 2003;998(1-2):201-11.

  15. Priestap HA, Van Baren CM, Di Leo Lira P, Coussio JD, and Bandoni AL. Volatile constituents of Aristolochia argentina. Phytochemistry. 2003;63(2):221-5.

  16. Varming C, Petersen MA, and Poll L. Comparison of isolation methods for the determination of important aroma compounds in blackcurrant (Ribes nigrum L.) juice, using nasal impact frequency profiling. J. Agric. Food Chem. 2004;52(6):1647-52.

  17. Choi HS. Character impact odorants of Citrus hallabong [(C. unshiu Marcov x C. sinensis Osbeck) x C. reticulata Blanco] cold-pressed peel oil. J. Agric. Food Chem. 2003;51(9):2687-92.

  18. Davies NW. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20M phases. J. Chromatogr. A. 1990;503:1-24.

  19. Weissbecker B, Holighaus G, Schütz S. Gas chromatography with mass spectrometric and electroantennographic detection: analysis of wood odorants by direct coupling of insect olfaction and mass spectrometry . J. Chromatogr. A 2004;1056(1-2):209-16.

  20. Hamm S, Bleton J, and Tchapla A. Headspace solid phase microextraction for screening for the presence of resins in Egyptian archaeological samples. J. Sep. Sci. 2004;27(3):235-43.

  21. Sotomayor JA, Martínez RM, García AJ, and Jordan MJ. Thymus zygis subsp. gracilis: watering level effect on phytomass production and essential oil quality. J. Agric. Food Chem. 2004;52(17):5418-24.

  22. Wang Q, Yang Y, Zhao X, Zhu B, Nan P, Zhao J, et al. Chemical variation in the essential oil of Ephedra sinica from Northeastern China Food Chem. 2006;98(1):52-8.

  23. Gottlieb OR. Micromolecular Evolution, Systematics and Ecology. Germany: Springer-Verlag; 1982.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Plant Med. 2016;21