medigraphic.com
SPANISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2017, Number 1

<< Back Next >>

salud publica mex 2017; 59 (1)

Effects of climatic and social factors on dengue incidence in Mexican municipalities in the state of Veracruz

Moreno-Banda Gl, Riojas-Rodríguez H, Hurtado-Díaz M, Danis-Lozano R, Rothenberg SJ
Full text How to cite this article

Language: English
References: 70
Page: 41-52
PDF size: 894.58 Kb.


Key words:

dengue, disease vectors, El Nino-southern oscillation, climate, time series studies.

ABSTRACT

Objective. To assess links between the social variables and longer-term El Niño-Southern Oscillation (ENSO) related weather conditions as they relate to the week-to-week changes in dengue incidence at a regional level. Materials and methods. We collected data from 10 municipalities of the Olmeca region in México, over a 10 year period (January 1995 to December 2005). Negative binomial models with distributed lags were adjusted to look for associations between changes in the weekly incidence rate of dengue fever and climate variability. Results. Our results show that it takes approximately six weeks for sea surface temperatures (SST -34) to affect dengue incidence adjusted by weather and social variables. Conclusion. Such models could be used as early as two months in advance to provide information to decision makers about potential epidemics. Elucidating the effect of climatic variability and social variables, could assist in the development of accurate early warning systems for epidemics like dengue, Chikungunya and Zika.


REFERENCES

  1. World Health Organization. Dengue factsheet, 2015. Geneva: WHO, 2015 [accessed: May 1, 2015]. Available at: http://www.who.int/mediacentre/ factsheets/fs117/en/

  2. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature 2013;496(7446):504-507. http://doi.org/k4n

  3. Thai KTD, Anders KL. The role of climate variability and change in the transmission dynamics and geographic distribution of dengue. Exp Biol Med 2011;236:(8)944-954. http://doi.org/btmmcc

  4. Ortiz PL, Rivero A, Linares Y, Pérez A, Vázquez JR. Spatial models for prediction and early warning of Aedes aegypti proliferation from data in climate change and variability in Cuba. MEDICC Review 2015;17(2):20-28.

  5. Banu S, Guo Y, Hu W, Dale P, Mackenzie JS, Mengersen K, et al. Impacts of El Niño Southern Oscillation and Indian Ocean Dipole on dengue incidence in Bangladesh. Nature 2014;5:1-9. http://doi.org/bqzx

  6. Naish S, Dale P, Mackenzie JS, McBride J, Mengersen K, Tong S. Climate change and dengue: a critical and systematic review of quantitative modelling approaches. BMC Infect Dis 2014;14:167. http://doi.org/bqzz

  7. Stewart-Ibarra AM, Lowe R. Climate and non-climate drivers of dengue epidemics in southern coastal Ecuador. Am J Trop Med Hyg 2013;88(5):971-981. http://doi.org/bqz2

  8. Cólon-González FJ, Fezzi C, Lake IR, Hunter PR. The effects of weather and climate change on dengue. PLos Negl Trop Dis 2013;7(11):e2503-10. http://doi.org/bqz3

  9. Colón-González FJ, Lake IR, Bentham G. Climate variability and dengue fever in warm and humid Mexico. Am J Trop Med Hyg 2011;84(5):757-763. http://doi.org/ddnz5z

  10. Fuller DO, Troyo A, Beier JC. El Niño Southern Oscillation and vegetation dynamics as predictors of dengue fever cases in Costa Rica. Environ Res Lett 2009;4:140111-140118. http://doi.org/c8szwq

  11. Johansson MA, Dominici F, Glass GE. Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl Trop Dis 2009;3(2):e382. http://doi.org/fdw6n8

  12. Brunkard JM, Cifuentes E, Rothenberg SJ. Assessing the roles of temperature, precipitation, and ENSO in dengue re-emergence on Texas- Mexico border region. Salud Publica Mex 2008;50(3):227-234. http://doi. org/d84jtt

  13. Zell R, Krumbholz A, Wutzler P. Impact of global warming on viral diseases: what is the evidence? Curr Opin Biotechnol 2008;19(6):652-660. http://doi.org/c8ntg6

  14. Hurtado-Díaz M, Riojas-Rodríguez H, Rothenberg SJ, Gomez-Dantés H, Cifuentes-García E. Impact of climate variability on the incidence of dengue in Mexico. Trop Med Int Health 2007;12(11):1327-1337. http://doi. org/dm7c6x

  15. Ortiz Bultó PL, Pérez A, Rivero A, León N, Díaz M, Pérez A. Assessment of human health and vulnerability to climate variability and change in Cuba. Environ Health Perspect 2006; 114(12):1942-1949. http://doi.org/fft8w4

  16. Reiter P. Climate change and mosquito-borne disease. Environ Health Perspect 2001; 109 Supp1: 141-161. http://doi.org/fwwx99

  17. Jetten TH, Focks DA. Potential changes in the distribution of dengue transmission under climate warming. Am J Trop Med Hyg 1997;57(3):285-297.

  18. Shope R. Global climate change and infectious diseases. Environ Health Perspect 1991;96:171-174. http://doi.org/dr3cb5

  19. Patz JA, Epstein PR, Burke TA, Balbus JM. Global climate change and emerging infectious diseases. JAMA 1996;275(3):217-223. http://doi.org/ d5hbc8

  20. Anyamba A, Linthicum KJ, Small JL, Collins KM, Tucker CJ, Pak EW, et al. Climate teleconnections and recent patterns of human and animal disease outbreaks. PLoS Negl Trop Dis 2012;6(1):e1465. http://doi.org/fxqs73

  21. Barrera R, Amador M, Clark GG. Use of the pupal survey technique for measuring Aedes aegypti (Diptera: Culicidae) productivity in Puerto Rico. Am J Trop Med Hyg 2006;74(2): 290-302.

  22. Montgomery BL, Ritchie SA. Roof gutters: a key container for Aedes aegypti and Ochlerotatus notoscriptus (Diptera:Culicidae) in Australia. Am J Trop Med Hyg 2002;67(3): 244-246.

  23. Moore CB, Cline BL, Ruiz-Tiben E, Lee D, Romney-Joseph H, Rivera- Correa E. Aedes aegypti in Puerto Rico: environmental determinants of larval abundance and relation to dengue virus transmission. Am J Trop Med Hyg 1978;27(6):1225-1231.

  24. Mohammed A, Chadee DD. Effects of different temperature regimens on the development of Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes. Acta Trop 2011;119(1):38-43. http://doi.org/cprr53

  25. Tun-Lin W, Burkot TR, Kay BH. Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Med Vet Entomol 2000;14(1):31-37. http:// doi.org/fm5h96

  26. Rueda LM, Patel KJ, Axtell RC, Stinner RE. Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J Med Entomol 1990;27(5):892-898. http:// doi.org/bqz4

  27. Yasuno M, Tonn RJ. A study of biting habits of Aedes aegypti in Bangkok, Thailand. Bull World Health Organ 1970;43(2):319-325.

  28. Delatte H, Gimonneau G, Triboire A, Fontenille D. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J Med Entomol 2009;46(1):33-41. http://doi. org/d37r2z

  29. Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg 1987;36(1):143-152.

  30. Poveda G, Rojas W, Quiñones ML, Vélez ID, Mantilla RI, Ruiz D, et al. Coupling between annual and ENSO timescales in the malaria–climate association in Colombia. Environ Health Perspect 2001;109(5):489-493. http://doi.org/d8mhrz

  31. Ferreria MC. Geographical distribution of the association between El Niño South Oscillation and dengue fever in the Americas: a continental analysis using geographical information system-based techniques. Geospatial Health 2014;9(1):141-151. http://doi.org/bqz5

  32. Earnest A, Tan SB, Wilder-Smith A. Meteorological factors and El Niño Southern Oscillation are independently associated with dengue infections. Epidemiol Infect 2012;140(7):1244-1251. http://doi.org/d86htx

  33. Nagao Y, Thavara U, Chitnumsup P, Tawatsin A, Chansang C, Campbell- Lendrum D. Climatic and social risk factors for Aedes infestation in rural Thailand. Trop Med Int Health 2003;8(7):650-659. http://doi.org/d4tbbs

  34. Mondini A, Chiaravalloti-Neto F. Socioeconomic variables and dengue transmission. Rev Saúde Publica 2007;41(6):923-930. http://doi.org/ctn8gn

  35. Reiter P, Lathrop S, Bunning M, Biggerstaff B, Singer D, Tiwari T, et al. Texas lifestyle limits transmission of dengue virus. Emerg Infect Dis 2003;9(1):86-89. http://doi.org/bqz6

  36. Brunkard JM, Robles-López JL, Ramírez J, Cifuentes E, Rothenberg SJ, Hunsperger EA, et al. Dengue fever seroprevalence and risk factors, Texas- Mexico border, 2004. Emerg Infect Dis 2007;13(10):1477-1483. http://doi. org/bk8b

  37. Dirección General de Epidemiología (DGE) 2014. Anuarios de morbilidad 1995 al 2005. Sistema Único de Información para la Vigilancia Epidemiológica/ SSA (SUIVE). DGE, 2014 [accessed Feb 10, 2015]. Available at: http://www.epidemiologia.salud.gob.mx/dgae/infoepid/inicio_anuarios.html

  38. Bhatnagar S, Lai V, Gupta SD, Gupta OP. Forecasting incidence of dengue in Rajasthan using time series analyses. Indian J Public Health 2012;56(4):281-285. http://doi.org/bqz7

  39. Tong S, Hu W. Climate variation and incidence of Ross River Virus in Cairns, Australia: A Time-series analysis. Environ Health Perspect 2001;109(12):1271-1273. http://doi.org/cdd9h4

  40. Instituto Nacional de Estadística y Geografía (INEGI) 2011. Data base. Censo de Población y Vivienda 2010. INEGI, 2011 [accessed: Sep 21, 2013]. Available at: http://www.censo2010.org.mx/

  41. Servicio Meteorológico Nacional (SMN) 2006. Data base. Estaciones Meteorológicas y Estación Sinóptica Meteorológica Automáticas 1995 al 2005 [accessed Feb 5, 2006]. Available at: http://smn.cna.gob.mx/es/climatologia and http://smn.cna.gob.mx/es/emas

  42. National Oceanic and Atmospheric Administration (NOAA) 2009. Data base. Global temperatures well above average; slightly above-average for U.S. NOAA, 2009 [accessed Dec 3, 2009]. Available at: http://www. noaanews.noaa.gov/stories2009/20091208_globalstats.html

  43. Dirección General Adjunta de Epidemiología (DGE) 2005 [accessed Jul 22, 2013]. Available at: http://www.epidemiologia.salud.gob.mx/dgae

  44. Instituto Nacional de Estadística y Geografía (INEGI) 2006. Data base. II Conteo de Población y Vivienda 2005. Veracruz, Ver. INEGI, 2006 [accessed Sep 21, 2013]. Available at: http://www.inegi.org.mx/

  45. Instituto Nacional de Estadística y Geografía (INEGI) 2001. Data base. XII Censo General de Población y Vivienda, 2000. Veracruz, Ver. INEGI, 2001 [accessed Sep 21, 2013]. http://www.inegi.org.mx/

  46. Instituto Nacional de Estadística y Geografía (INEGI) 1996. Data base. I Conteo de Población y Vivienda 1995. Veracruz, Ver. INEGI, 1996 [accessed Sep 21, 2013]. Available at: http://www.inegi.org.mx/

  47. Instituto Nacional de Estadística y Geografía (INEGI) 1992. Data base. XI Censo General de Población y Vivienda, 1990. Veracruz, Ver. INEGI, 1992 [accessed Sep 21, 2013]. Available at: http://www.inegi.org.mx/

  48. Consejo Nacional de Evaluación de la Política de Desarrollo Social (CONEVAL) 2006. Data base. Índice de rezago social 2005 a nivel municipal y por localidad. CONEVAL, 2006 [accessed May 14, 2015]. Available at: http://www.coneval.org.mx/Medicion/IRS/Paginas/Indice-de-rezagosocial- 2005.aspx

  49. Consejo Nacional de Población (Conapo) 2015. Data base. Índice de marginación por entidad federativa 1990-2015. Conapo, 2015 [accessed May 15, 2016]. Available at: http://www.conapo.gob.mx/es/CONAPO/Datos_ Abiertos_del_Indice_de_Marginacion

  50. Consejo Nacional de Población (Conapo) 2015. Data base. Índice de marginación por municipio 1990-2015. Conapo, 2015 [accessed May 15, 2016]. Available at: http://www.conapo.gob.mx/es/CONAPO/Datos_Abiertos_ del_Indice_de_Marginacion

  51. Said S, Dickey D. Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 1984;71(3):599-607. http://doi. org/fjngds

  52. Newton HJ. A time series analysis laboratory. Pacific Grove. California: Wads-worth & Brooks ⁄ Cole Publishing Company, 1996.

  53. Hales S, Weinstein P, Souares Y, Woodward A. El Nino and the dynamics of vector borne disease transmission. Environ Health Perspect 1999;107(2):99-102.

  54. Uriel E. Análisis de series temporales. 2ª Edición. Madrid: Modelos ARIMA Paraninfo, 1992.

  55. Durbán M. An introduction to smoothing with penalties: P-splines. Boletín de Estadística e Investigación Operativa 2009;25(3):195-205.

  56. Royston P, Sauerbrei W. Multivariable modeling with cubic regression splines: A principled approach. Stata Journal 2007;7(1):45-70.

  57. Dear K, Ranmuthugala G, Kjellström T, Skinner C, Hanigan I. Effects of temperature and ozone on daily mortality during the August 2003 heat wave in France. Archives of environmental & occupational health 2010;60(4):205-212. http://doi.org/bt6g3h

  58. Romer D. Advanced Macroeconomics. 4th ed. New York: McGraw-Hill, 2012.

  59. Depradine CA, Lovell EH. Climatological variables and the incidence of dengue fever in Barbados. Int J Environ Res 2004;14(6):429-441. http:// doi.org/ft6qkr

  60. Hsieh YH, Chen SWS. Turning points, reproduction number, and impact of climatological events on multi-wave dengue outbreaks. Trop Med Int Health 2009;14(6):628-638. http://doi.org/dh8bt6

  61. Gómez-Dantés H. Elementos económicos y políticos que impactan en el control del dengue en México. Salud Publica Mex 2007;49:117-119.

  62. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature 2008;451(7181):990-994. http://doi.org/cbxh9h

  63. Hopp MJ, Foley JA. Worldwide fluctuations in dengue fever cases related to climate variability. Climate Research 2003;25(1):85-94. http:// doi.org/bt6vsm

  64. IPCC, Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York, NY, USA. Cambridge, United Kingdom: Cambridge University Press, 2014:1132.

  65. Morin CW, Comrie AC, Ernst KC. Climate and dengue transmission: evidence and implications. Environ Health Perspect 2013;121(11-12):1264- 1272. http://doi.org/bqz8

  66. Lu L, Lin H, Tian L, Yang W, Sun J, Liu Q. Time series analysis of dengue fever and weather in Guangzhou, China. BMC Publ Health 2009;9:395. http://doi.org/c3m9x4

  67. Wu PC, Guo HR, Lung SC, Lin CY, Su HJ. Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Trop 2007;103:(1)50-57. http://doi.org/fhtjh6

  68. Cazelles B, Chavez M, McMichael AJ, Hales S. Nonstationary influence of El Nino on the synchronous dengue epidemics in Thailand. PLoS Med 2005;2(4):e106. http://doi.org/ftw9z8

  69. Patz JA, McGeehin MA, Bernard SM, Ebi KL, Epstein PR, Grambsch A, et al. The potential health impacts of climate variability and change for the U.S.: Executive summary of the report of the Health Sector of the U. S. National Assessment. Environ Health Perspect 2000;108(4):367-376. http://doi.org/bshqhp

  70. Bai L, Morton LC, Liu Q. Climate change and mosquito-borne diseases in China: a review. Global Health 2013;9:10. http://doi.org/bqz9




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2017;59