medigraphic.com
SPANISH

Revista Cubana de Pediatría

ISSN 1561-3119 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2017, Number 2

<< Back Next >>

Rev Cubana Pediatr 2017; 89 (2)

Clinical and genetic characterization of cystic fibrosis in Holguin province

Santana HEE, Tamayo CVJ, Collazo MT, López RI, Feria EF, Rodríguez CF
Full text How to cite this article

Language: Spanish
References: 22
Page: 136-144
PDF size: 203.68 Kb.


Key words:

cystic fibrosis, mucoviscidosis, exocrine glands, CFTR gene, CFTR protein, mutations, polymorphisms.

ABSTRACT

Introduction: Cystic fibrosis is one type of genetic disease characterized by chronic pulmonary alterations, exocrine pancreatic failure and high concentration of electrolytes in sweat. It is caused by mutations in CFTR gene that codes for a chlorine channel called transmembrane conductance regulator protein (CFTR) located in chromosome 7. It is a hereditary recessive autosomal disease and expresses great clinical and genetic heterogeneity.
Objective: To describe the main clinical and genetic characteristics of patients with cystic fibrosis in Holguin province.
Methods: A case-series descriptive study was conducted in a sample of 22 patients with clinical and molecular diagnosis of cystic fibrosis from Holguin province in the period of January 2009 through January 2016.
Results: Males predominated, 15 diagnosed patients aged 6 to 10 years, 81.8 % of the sample presented with chronic respiratory manifestations and the most frequently associated sign was malnutrition in 14 patients (63.6 %). The compound heterozygotes accounted for 59.09 % and the homozygotes for 40.9 %; homozygotic ΔF508 mutation affected 4 patients whereas compound heterozygotic form was seen in 7, representing 31.8 %.
Conclusions:The most found mutation is ΔF508 deletion and the predominant clinical manifestation is chronic respiratory disease. The patients with homozygotic ΔF508 mutation were the most clinically affected persons.


REFERENCES

  1. Rojo Concepción M, Quintero Enamorados I, Delgado Lopez H, Razón Behar R, Mir del Junco J, García Quesada M, et al. Cuban Commission of cystic fibrosis. Registration of patients since 1977. Bol Med Hosp Infant Mex [serie en Internet]. 1980 Jul-Aug [citado 28 de Marzo de 2016];37(4). Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/7407012

  2. Collazo T, Magarino C, Chavez R, Suardiaz B, Gispert S, Gomez M, et al. Frequency of delta-F508 mutation and XV2C/KM19 haplotypes in Cuban cystic fibrosis families. Hum Hered [serie en Internet]. 1995 Jan-Feb [citado 28 de Marzo de 2016];45(1). Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/7896301

  3. Collazo T, Bofill AM, Clark Y, Hernández Y, Gómez M, Rodríguez F, et al. Common mutations in Cuban cystic fibrosis patients. J Cyst Fibros [serie en Internet]. 2009 Jan [citado 28 de Marzo de 2016];8(1). Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/18938114

  4. Collazo T, López I, Clark Y, Piloto Y, González L, Gómez M, et al. Antenatal testing for cystic fibrosis in Cuba, 1988-2011. MEDICC Rev [serie en Internet]. 2014 Jul-Oct [citado 28 de Marzo de 2016];16(3-4). Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25208115

  5. Barrado L, Brañas P, Orellana MA, Martínez MT, García G. Molecular Characterization of Achromobacter Isolates from Cystic Fibrosis and Non-Cystic Fibrosis Patients in Madrid, Spain. J Clin Microbiol [serie en Internet]. 2013 June [citado 28 de Marzo de 2016];51(6). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3716108/

  6. Cutting GR. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet [serie en Internet]. 2015 January [citado 28 de Marzo de 2016]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364438/

  7. Lucarelli M, Bruno SM, Pierandrei S, Ferraguti G, Stamato A, Narzi F, et al. A Genotypic-Oriented View of CFTR Genetics Highlights Specific Mutational Patterns Underlying Clinical Macrocategories of Cystic Fibrosis. Mol Med [serie en Internet]. 2015 [citado 28 de Marzo de 2016];21(1). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503653/

  8. Cholon DM, Quinney NL, Fulcher ML, Esther CR, Das Jr. J. Potentiator Ivacaftor Abrogates Pharmacological Correction of ΔF508 CFTR in Cystic Fibrosis. Sci Transl Med [serie en Internet]. 2014 July 23 [citado 28 de Marzo de 2016];6(246). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4272825/

  9. Sosnay PR, Siklosi KR, Goor FV, Kaniecki K, Yu H. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat Genet [serie en Internet]. 2013 October [citado 28 de Marzo de 2016];45(10). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874936/

  10. Knowles MR, Drumm M. The Influence of Genetics on Cystic Fibrosis Phenotypes. Cold Spring Harb Perspect Med [serie en Internet]. 2012 December [citado 28 de Marzo de 2016];2(12). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3543075/

  11. Rowe SM, Heltshe SL, Gonska T, Donaldson SH, Borowitz D. Clinical Mechanism of the Cystic Fibrosis Transmembrane Conductance Regulator Potentiator Ivacaftor in G551D-mediated Cystic Fibrosis. Am J Respir Crit Care Med [serie en Internet]. 2014 July 15 [citado 28 de Marzo de 2016];190(2). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226057/

  12. Melotti P, Mafficini A, Lebecque P, Ortombina M, Leal T, Pintani E, et al. Impact of MIF Gene Promoter Polymorphism on F508del Cystic Fibrosis Patients. PLoS One [serie en Internet]. 2014 [citado 28 de Marzo de 2016];9(12). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4264759/

  13. Sands D, Umławska W, Zielińska A. A cross-sectional study of growth, nutritional status and body proportions in children and adolescents at a medical center specializing in the treatment of cystic fibrosis in Poland. Arch Med Sci [serie en Internet]. 2015 March 16 [citado 28 de Marzo de 2016];11(1). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4379371/

  14. Alonso MJ, Heine-Sunyer D, Calvo M, Rosell J, Jiménez J, Ramos MD, et al. Spectrum of mutations in the CFTR qene in cystic fibrosis patients of Spanish ascestry. Ann Hum Genet [serie en Internet]. 2007 [citado 28 de Marzo de 2016];71. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed .

  15. Fernández FM, Lara AF, Rodríguez Cala F, García Castañeda H, Fernández García S, Roblejo Balbuena H. Fibrosis quística. Diagnóstico tardío en el adulto presentación de caso. Rev Hab de Ciencias Médicas. 2010;9(2):196-202.

  16. Brodlie M, Haq IJ, Roberts K, Elborn JS. Targeted therapies to improve CFTR function in cystic fibrosis. Genome Med [serie en Internet]. 2015 [citado 28 de Marzo de 2016];7(101). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4582929/

  17. Razón Behar R, Rodríguez Calá R, Rojo Concepción M, González Valdés JA, Abreu Suárez G, Pérez Rodríguez T, et al. La fibrosis quística en Cuba [homepage en Internet]. 2008 [citado 18 de Mayo de 2016]. Disponible en: http://www.sld.cu/galerias/pdf/sitios/pediatria/la_fibrosis_quistica_en_cuba.pdf

  18. Gallati S. Disease-modifying genes and monogenic disorders: experience in cystic fibrosis. Appl Clin Genet [serie en Internet]. 2014 [citado 28 de Marzo de 2016];7. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104546/

  19. Ziętkiewicz E, Rutkiewicz E, Pogorzelski A, Klimek B, Voelkel K. CFTR Mutations Spectrum and the Efficiency of Molecular Diagnostics in Polish Cystic Fibrosis Patients. PLoS One [serie en Internet]. 2014 [citado 28 de Marzo de 2016];9(2). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3935850/

  20. Wang Y, Liu J, Loizidou A, Bugeja LA, Warner R. CFTR potentiators partially restore channel function to A561E-CFTR, a cystic fibrosis mutant with a similar mechanism of dysfunction as F508del-CFTR. Br J Pharmacol [serie en Internet]. 2014 October [citado 28 de Marzo de 2016];171(19). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209154/

  21. Dong Q, Ernst SE, Ostedgaard SL, Shah VS, Ver Heul AR. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia. J Biol Chem [serie en Internet]. 2015 May 29 [citado 28 de Marzo de 2016];290(22). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447984/

  22. Farinha CM, Sousa M, Canato S, Schmidt A, Uliyakina I, Amaral MD. Increased efficacy of VX-809 in different cellular systems results from an early stabilization effect of F508del-CFTR. Pharmacol Res Perspect [serie en Internet]. 2015 August [citado 28 de Marzo de 2016];3(4). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492728/




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Pediatr. 2017;89