Revista Biomédica

Contents by Year, Volume and Issue

Table of Contents

General Information

Instructions for Authors

Message to Editor

Editorial Board

>Journals >Revista Biomédica >Year 2017, Issue 2

Pérez-Padilla EA, Cervantes-Ramírez VM, Hijuelos-García NA, Pineda-Cortés JC, Salgado-Burgos H
Prevalence, Causes, and Treatment of Major Depression
Rev Biomed 2017; 28 (2)

Language: Español
References: 210
Page: 73-98
PDF: 379.45 Kb.

Full text


Major depression represents a public health problem due to its high prevalence. The etiology of major depression is complex because involves psychosocial, genetic, and biological factors. Among psychosocial factors, different studies report that the first depressive episode appear after some stressful event and produces long-term changes in brain physiology. These long-lasting changes produce variations at the structural level and in the functioning of different brain areas. Among the genetic factors involved in depressive illness, it has been reported that about 200 genes are related to major depressive disorder. Within the biological factors, there is an evidence of alterations in the level of neurotransmitters, cytosine’s and hormones, whose actions induces structural and functional modifications in the central nervous system, the immune system and the endocrine system, which increases the risk of suffering major depression. Despite years of study, the biological basis of major depression and precise mechanisms of antidepressant efficacy remain unclear. The objective of the present review is to summarize the main conclusions of the clinical and experimental literature regarding to the etiology of major depressive disorder.

Key words: Major depression, neurotransmitters, neuroplasticity, serotonin, norepinephrine, immune system.


  1. Lang UE, Borgwardt S. Molecular mechanisms of depression: perspectives on new treatment strategies. Cell Physiol Biochem. 2013; 31(6):761-77.

  2. Gerber PD, Barrett JE, Barrett JA, Oxman TE, Manheimer E, Smith R, Whiting RD. The relationship of presenting physical complaints to depressive symptoms in primary care patients. J Gen Intern Med. 1992; 7(2):170-3.

  3. Schulz PE, Arora G. Depression. Continuum (Minneap Minn). Behavioral Neurology and Neuropsychiatry. 2015; 21(3):756-71.

  4. Kessler, R.C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K.R., Rush, A.J., Walters, E.E., and Wang, P.S.; National Comorbidity Survey Replication. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA, 2003; 289, 3095–3105.

  5. Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci. 2006; 7(2):137-51.

  6. Sadek N, Nemeroff. Actualización en neurobiología de la depresión Revista de Psiquiatría del Uruguay. 2000; 64 (3): 462-485.

  7. Medina-Mora, ME, Borges G, Lara, C., Benjet, C. La salud mental en México y los retos para su atención. Resultados de la Encuesta Nacional de Epidemiología Psiquiátrica. Asociación Psiquiátrica Mexicana: Manual de los Trastornos Mentales Edición 2005. México, 2005, pp. 13-24.

  8. Secretaría de Salud, Secretariado Técnico del Consejo Nacional de Salud Mental. Declaración de México para la Reestructuración de la atención psiquiátrica, 2006.

  9. Belló M., Puentes-Rosas E., Medina-Mora M. E. Prevalencia y diagnóstico de depresión en población adulta en México. Salud Pública de México. 2005; suplemento 1(47): S4-S11

  10. Gutiérrez García, A. G., Contreras, C. M. & Orozco Rodríguez, R. C. El suicidio, conceptos actuales. Salud Mental, 2006; 29(5): 66-74.

  11. Instituto Nacional de Estadística y Geografía (INEGI). Estadísticas de mortalidad, 2013. Base de datos. CONAPO. Proyecciones de la población de México 2010 a 2050. INEGI, 2013.

  12. Bunney WE Jr, Davis JM. Norepinephrine in depressive reactions. A review. Arch Gen Psychiatry. 1965; 13:483–494.

  13. Schildkraut J. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Amer J Psychiat. 1965; 122:509–522.

  14. Bosker, F.J., Hartman, C.A., Nolte, I.M., Prins, B.P., Terpstra, P., Posthuma, D., van Veen, T., Willemsen, G., DeRijk, R.H., de Geus, E.J. Poor replication of candidate genes for major depressive disorder using genome-wide association data. Mol. Psychiatry. 2011; 16, 516–532.

  15. López-León, S., Janssens, A.C., Gonza´ lez-Zuloeta Ladd, A.M., Del-Favero, J., Claes, S.J., Oostra, B.A., and van Duijn, C.M. Meta-analyses of genetic studies on major depressive disorder. Mol. Psychiatry. 2008; 13, 772–785.

  16. Shea A, Walsh C, Macmillan H, Steiner M. Child maltreatment and HPA axis dysregulation: relationship to major depressive disorder and post-traumatic stress disorder in females. Psychoneuroendocrinology. 2005; 30(2):162–78.

  17. Bortolotti B, Menchetti M, Bellini F, Montaguti MB, Berardi D. Psychological interventions for major depression in primary care: a meta-analytic review of randomized controlled trials. Gen Hosp Psychiatry. 2008; 30:293–302.

  18. Cuijpers P, van Straten A, van Oppen P, Andersson G. Are psychological and pharmacologic interventions equally effective in the treatment of adult depressive disorders? A meta-analysis of comparative studies. J Clin Psychiatry. 2008; 69:1675–1685.

  19. American Psychiatric Association. DSM-5. Manual Diagnóstico y Estadístico de los Trastornos Mentales.DSM-5®. Edición: 5ª. Editorial Médica Panamericana. 2014. 492 pp.

  20. Organización Panamericana de la Salud. Clasificación estadística internacional de las enfermedades y problemas relacionados con la salud (CIE-10). Washington, D.C: OPS; 1995.

  21. Asociación Americana de Psiquiatría. Manual Diagnóstico y Estadístico de los Trastornos Mentales (DSM-IV-TR). Barcelona, España: Ed. Masson. 2005; p.387-476.

  22. Anderson G, Maes M. How Immune-inflammatory processes link CNS and psychiatric disorders: Classification and Treatment Implications. CNS Neurol Disord Drug Targets. 2016. In press.

  23. Chiriţă AL, Gheorman V, Bondari D, Rogoveanu I. Current understanding of the neurobiology of major depressive disorder. Rom J Morphol Embryol. 2015; 56(2 Suppl):651-8.

  24. Drevets WC. Neuroplasticity in mood disorders. Dialogues Clin Neurosci. 2004; 6(2):199-216.

  25. Manji HK, Drevets WC, Charney DS. The cellular neurobiology of depression. Nat Med. 2001; 7(5):541-7.

  26. Bouras C, Kövari E, Hof PR, Riederer BM, Giannakopoulos P. Anterior cingulate cortex pathology in schizophrenia and bipolar disorder. Acta Neuropathol. 2001;102(4):373-9.

  27. Baumann B, Danos P, Krell D, Diekmann S, Leschinger A, Stauch R, Wurthmann C, Bernstein HG, Bogerts B. Reduced volume of limbic systemaffiliated basal ganglia in mood disorders: preliminary data from a postmortem study. J Neuropsychiatry Clin Neurosci. 1999;11(1):71-8.

  28. Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, Overholser JC, Roth BL, Stockmeier CA. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression.Biol Psychiatry. 1999; 45(9):1085-98.

  29. Janssen J, Hulshoff Pol HE, Lampe IK, Schnack HG, de Leeuw FE, Kahn RS, Heeren TJ. Hippocampal changes and white matter lesions in early-onset depression. Biol Psychiatry. 2004; 56(11):825-31.

  30. O'Brien JT, Lloyd A, McKeith I, Gholkar A, Ferrier N. A longitudinal study of hippocampal volume, cortisol levels, and cognition in older depressed subjects. Am J Psychiatry. 2004; 161(11):2081-90.

  31. Neumeister A, Wood S, Bonne O, Nugent AC, Luckenbaugh DA, Young T, Bain EE, Charney DS, Drevets WC. Reduced hippocampal volume in unmedicated, remitted patients with major depression versus control subjects. Biol Psychiatry. 2005; 57(8):935-7.

  32. Czéh B, Lucassen PJ. What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? Eur Arch Psychiatry Clin Neurosci. 2007; 257(5):250-60.

  33. Janssen J, Hulshoff Pol HE, de Leeuw FE, Schnack HS, Lampe IK, Kok RM, Kahn RS, Heeren TJ. Hippocampal volume and subcortical white matter lesions in late-life depression: comparison of earlyand late-onset depression. J Neurol Neurosurg Psychiatry. 2007; 78(6):638-40.

  34. Frodl T, Meisenzahl EM, Zetzsche T, Hohne T, Banac S, Schorr C, Jager M, Leinsinger G, Bottlender R, Reiser M, Moller HJ. Hippocampal and amygdala changes in patients with major depressive disorder and healthy controls during a 1-year follow-up. J Clin Psychiatry 2004; 65:492–499.

  35. Frodl TS, Koutsouleris N, Bottlender R, Born C, Jager M, Scupin I, Reiser M, Moller HJ, Meisenzahl EM. Depression-related variation in brain morphology over 3 years: effects of stress? Arch Gen Psychiatry 2008; 65:1156–1165.

  36. MacMaster FP, Kusumakar V. Hippocampal volume in early onset depression. BMC Med 2004; 2:2.

  37. Lange C, Irle E. Enlarged amygdala volume and reduced hippocampal volume in young women with major depression. Psychol Med 2004; 34:1059–1064.

  38. Vythilingam M, Heim C, Newport J, Miller AH, Anderson E, Bronen R, Brummer M, Staib L, Vermetten E, Charney DS, Nemeroff CB, Bremner JD. Childhood trauma associated with smaller hippocampal volume in women with major depression. Am J Psychiatry 2002; 159: 2072–2080.

  39. Rajkowska G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry. 2000; 48(8):766-77.

  40. Cotter D, Landau S, Beasley C, Stevenson R, Chana G, MacMillan L, Everall I. The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia. Biol Psychiatry. 2002; 51(5):377- 86.

  41. Cotter D, Mackay D, Landau S, Kerwin R, Everall I. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry. 2001; 58(6):545-53.

  42. Benes FM, Todtenkopf MS, Kostoulakos P. GluR5,6,7 subunit immunoreactivity on apical pyramidal cell dendrites in hippocampus of schizophrenics and manic depressives. Hippocampus. 2001; 11(5):482- 91.

  43. Miguel-Hidalgo JJ, Rajkowska G. Morphological brain changes in depression: can antidepressants reverse them? CNS Drugs. 2002; 16(6):361-72.

  44. Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex. 2002; 12(4):386-94.

  45. Coppen A. The biochemistry of affective disorders. Br J Psychiatry. 1967; 113:1237–1264.

  46. Matussek, N. Die Catecholamin- und Serotonin hypothese der Depression. In: Hippius, H.; Seebach, H., editors. Das Depressive Syndrom. Urban & Schwarzenberg, München; Berlin, Wien: 1969

  47. Nutt DJ. The neuropharmacology of serotonin and noradrenaline in depression. Int Clin Psychopharmacol. 2002;17 Suppl 1:S1-12.

  48. Nutt DJ, Forshall S, Bell C, Rich A, Sandford J, Nash J, Argyropoulos S. Mechanisms of action of selective serotonin reuptake inhibitors in the treatment of psychiatric disorders. Eur Neuropsychopharmacol. 1999; 9 Suppl 3:S81-6.

  49. Richelson E. The clinical relevance of antidepressant interaction with neurotransmitter transporters and receptors. Psychopharmacol Bull. 2002; 36(4):133- 50.

  50. Miller DB, O'Callaghan JP. Depression, cytokines, and glial function. Metabolism. 2005; 54(5 Suppl 1):33-8.

  51. Slattery DA, Hudson AL, Nutt DJ. Invited review: the evolution of antidepressant mechanisms. Fundam Clin Pharmacol. 2004; 18(1):1-21.

  52. Cannon DM, Ichise M, Rollis D, Klaver JM, Gandhi SK, Charney DS, Manji HK, Drevets WC. Elevated serotonin transporter binding in major depressive disorder assessed using positron emission tomography and [11C]DASB; comparison with bipolar disorder. Biol Psychiatry. 2007 Oct 15; 62(8):870-7.

  53. Savitz J, Lucki I, Drevets WC. 5-HT1A receptor function in major depressive disorder. Progress in Neurobiology. 2009; 88(1):17-31.

  54. Chalmers DT, Kwak SP, Mansour A, Akil H, Watson SJ. Corticosteroids regulate brain hippocampal 5- HT1A receptor mRNA expression. J Neurosci. 1993; 13:914–923.

  55. Lopez JF, Chalmers DT, Little KY, Watson SJ. A.E. Bennett Research Award. Regulation of serotonin1A glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol Psychiatry 1998;43:547–573.

  56. Bowen DM, Najlerahim A, Procter AW, Francis PT, Murphy E. Circumscribed changes of the cerebral cortex in neuropsychiatric disorders of later life. Proc Natl Acad Sci U S A. 1989; 86(23):9504-8.

  57. Bowen DM, Najlerahim A, Procter AW, Francis PT, Murphy E. Circumscribed changes of the cerebral cortex in neuropsychiatric disorders of later life. Proc Natl Acad Sci U S A. 1989; 86(23):9504-8.

  58. Hsiung SC, Adlersberg M, Arango V, Mann JJ, Tamir H, Liu KP. Attenuated 5-HT1A receptor signaling in brains of suicide victims: involvement of adenylyl cyclase, phosphatidylinositol 3-kinase, Akt and mitogen-activated protein kinase. J Neurochem. 2003t ;87(1):182-94.

  59. J Tellez Vargas Noradrenaline its role in depression. Revista Colombiana de Psiquiatría. 2000; 29: 59-73.

  60. Richelson E. The clinical relevance of antidepressant interaction with neurotransmitter transporters and receptors. Psychopharmacol Bull. 2002; 36(4):133- 50.

  61. Slattery DA, Hudson AL, Nutt DJ. Invited review: the evolution of antidepressant mechanisms. Fundam Clin Pharmacol. 2004; 18(1):1-21

  62. Carvalho AF, Mackie K, Van Bockstaele EJ. Cannabinoid modulation of limbic forebrain noradrenergic circuitry. Eur J Neurosci. 2010; 31(2):286-301.

  63. White KJ, Walline CC, Barker EL. Serotonin transporters: implications for antidepressant drug development. AAPS J. 2005; 7(2):E421-33.

  64. Helton SG, Lohoff FW. Serotonin pathway polymorphisms and the treatment of major depressive disorder and anxiety disorders. Pharmacogenomics. 2015; 16 (5):541-53.

  65. Hirschfeld RM. History and evolution of the monoamine hypothesis of depression. J Clin Psychiatry. 2000; 61 (Suppl 6):4–6.

  66. Heninger GR, Delgado PL, Charney DS. The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry. 1996; 29:2–11.

  67. Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci. 2010; 13(10):1161-9.

  68. Racagni G, Popoli M. Cellular and molecular mechanisms in the long-term action of antidepressants. Dialogues Clin Neurosci. 2008; 10(4):385-400.

  69. Kendler KS, Karkowski LM, Prescott CA. Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry. 1999; 156:837–841.

  70. Gilbertson MW, Shenton ME, Ciszewski A, Kasai K, Lasko NB, Orr SP, et al. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat Neurosci. 2002; 5:1242–1247.

  71. Holsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology. 2000; 23 (5):477–501.

  72. Hatzinger M. Neuropeptides and the hypothalamicpituitary- adrenocortical (HPA) system: review of recent research strategies in depression. World J Biol Psychiatry. 2000; 1:105–111.

  73. Binder EB, Nemeroff CB. The CRF system, stress, depression and anxiety-insights from human genetic studies. Mol Psychiatry. 2010; 15(6):574-88.

  74. Warner-Schmidt JL, Duman RS. Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus. 2006; 16:239–249.

  75. Dranovsky A, Hen R. Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry. 2006; 59:1136–1143.

  76. Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology. 2008; 33:88–109.

  77. Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008; 455:894–902.

  78. Chiba H, Oe M, Uchimura N. Patients with Posttraumatic Stress Disorder with Comorbid Major Depressive Disorder Require a Higher Dose of Psychotropic Drugs. Kurume Med J. 2016; 62(1- 2):23-8.

  79. Maes M, Smith R, and Scharpe S. The monocyte- T-lymphocyte hypothesis of major depression. Psychoneuroendocrinology, 1995. 20: 111-6.

  80. Garcia-Bueno B and Leza J C. Inflammatory/antiinflammatory mechanisms in the brain following exposure to stress. Rev Neurol, 2008. 46: 675-83.

  81. Pace T W and Miller A H. Cytokines and glucocorticoid receptor signaling. Relevance to major depression. Ann N Y Acad Sci, 2009. 1179: 86-105.

  82. Zunszain P A, Anacker C, Cattaneo A, Carvalho L A, and Pariante C M. Glucocorticoids, cytokines and brain abnormalities in depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011; 35: 722-9.

  83. Aihara M, Ida I, Yuuki N, Oshima A, Kumano H, Takahashi K, et al. HPA axis dysfunction in unmedicated major depressive disorder and its normalization by pharmacotherapy correlates with alteration of neural activity in prefrontal cortex and limbic/paralimbic regions. Psychiatry Res. 2007: 155(3):245–56.

  84. Kunugi H, Ida I, Owashi T, Kimura M, Inoue Y, Nakagawa S, et al. Assessment of the dexamethasone/CRH test as a state-dependent marker for hypothalamic-pituitary-adrenal (HPA) axis abnormalities in major depressive episode: a multicenter study. Neuropsychopharmacology. 2006; 31(1):212–20.

  85. Vreeburg SA, Hoogendijk WJ, van Pelt J, Derijk RH, Verhagen JC, van Dyck R, et al. Major depressive disorder and hypothalamic-pituitary-adrenal axis activity: results from a large cohort study. Arch Gen Psychiatry. 2009; 66 (6): 617–26.

  86. Musazzi L, Tornese P, Sala N, Popoli M. Acute stress is not acute: sustained enhancement of glutamate release after acute stress involves readily releasable pool size and synapsin I activation. Mol Psychiatry. 2016; In press.

  87. García-Rojo G, Fresno C, Vilches N, Díaz-Véliz G, Mora S, Aguayo F, Pacheco A, Parra-Fiedler N, Parra CS, Rojas PS, Tejos M, Aliaga E, Fiedler JL. The ROCK inhibitor Fasudil prevents chronic restraint stress-induced depressive-like behaviors and dendritic spine loss in rat hippocampus. Int J Neuropsychopharmacol. 2016; In press.

  88. Conrad CD, Ortiz JB, Judd JM. Chronic stress and hippocampal dendritic complexity: Methodological and functional considerations. Physiol Behav. 2016; 22. pii: S0031-9384(16)30600.

  89. Saleh A, Potter GG, McQuoid DR, Boyd B, Turner R, MacFall JR, Taylor WD. Effects of early life stress on depression, cognitive performance and brain morphology. Psychol Med. 2016; 29:1-11

  90. Muneer A. The Neurobiology of Bipolar Disorder: An Integrated Approach. Chonnam Med J. 2016; 52(1):18-37.

  91. Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychi-atric disorders. Arch Gen Psychiatry. 2000; 57(10):925–35

  92. Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 2008; 31(9):464–8.

  93. Varghese FP, Brown ES. The hypothalamic-pituitaryadrenal axis in major depressive disorder: a brief primer for primary care physicians. Prim Care Companion J Clin Psychiatry. 2001; 3(4):151–5.

  94. Stetler C, Miller GE. Depression and hypothalamicpituitary- adrenal acti-vation: a quantitative summary of four decades of research. Psychosom Med (2011) 73(2):114–26. doi:10.1097/PSY.0b013e31820ad12b

  95. Owens M, Herbert J, Jones PB, Sahakian BJ, Wilkinson PO, Dunn VJ, et al. Elevated morning cortisol is a stratified population-level biomarker for major depression in boys only with high depressive symptoms. Proc Natl Acad Sci U S A. 2014; 111(9):3638–43.

  96. Waters RP, Rivalan M, Bangasser DA, Deussing JM, Ising M, Wood SK, et al. Evidence for the role of corticotropin-releasing factor in major depressive disorder. Neurosci Biobehav Rev. 2015; 58:63–78.

  97. Alleva E, Santucci D. Psychosocial vs. "physical" stress situations in rodents and humans: role of neurotrophins. Physiol Behav. 2001; 73(3):313-20.

  98. Morrison FG, Ressler KJ. From the neurobiology of extinction to improved clinical treatments. Depress Anxiety. 2014; 31(4):279-90.

  99. Rutherford LC, Nelson SB, Turrigiano GG. BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron. 1998; 21(3):521-30.

  100. Duman R. Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromol Med 2004; 5:11-26.

  101. Hashimoto K. Brain-derived neurotrophic factor as a biomarker for mood disorders: an historical overview and future directions. Psychiatry Clin Neurosci. 2010; 64(4):341–57.

  102. Boldrini M, Hen R, Underwood MD, Rosoklija GB, Dwork AJ, Mann JJ, et al. Hippocampal angiogenesis and progenitor cell proliferation are increased with antidepressant use in major depression. Biol Psychiatry. 2012; 72(7):562–71.

  103. Long Z, Duan X, Wang Y, Liu F, Zeng L, Zhao JP, et al. Disrupted structural con-nectivity network in treatment-naive depression. Prog Neuropsychopharmacol Biol Psychiatry. 2015; 56:18–26.

  104. Korgaonkar MS, Fornito A, Williams LM, Grieve SM. Abnormal structural networks characterize major depressive disorder: a connectome analysis. Biol Psychiatry. 2014; 76(7):567–74.

  105. Masi G, Brovedani P. The hippocampus, neurotrophic factors and depression: possible implications for the pharmacotherapy of depression. CNS Drugs. 2011; 25(11):913–31.

  106. Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry. 2003; 60(8):804-15.

  107. Birkenhäger TK, Geldermans S, Van den Broek WW, van Beveren N, Fekkes D. Serum brainderived neurotrophic factor level in relation to illness severity and episode duration in patients with major depression. J Psychiatr Res. 2012; 46 (3): 285–9.

  108. Dell’Osso L, Del Debbio A, Veltri A, Bianchi C, Roncaglia I, Carlini M, et al. Associations between brain-derived neurotrophic factor plasma levels and severity of the illness, recurrence and symptoms in depressed patients. Neuropsychobiology. 2010; 62(4):207–12.

  109. Ninan PT, Shelton RC, Bao W, Guico-Pabia CJ. BDNF, interleukin-6, and salivary cortisol levels in depressed patients treated with desvenlafaxine. Prog Neuropsychopharmacol Biol Psychiatry. 2014, 48:86–91.

  110. Yasui-Furukori N, Tsuchimine S, Nakagami T, Fujii A, Sato Y, Tomita T, et al. Association between plasma paroxetine concentration and changes in plasma brain-derived neurotrophic factor levels in patients with major depressive disorder. Hum Psychopharmacol. 2011; 26 (3):194–200.

  111. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016; 22 (3):238-49.

  112. Siuciak JA, Lewis DR, Wiegand SJ, Lindsay R. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 1997; 56:131-7.

  113. Connor TJ, Leonard BE. Depression, stress and immunological activation: the role of cytokines in depressive disorders. Life Sci. 1998; 62(7):583-606.

  114. Raison CL, Borisov AS, Majer M, Drake DF, Pagnoni G, Woolwine BJ, et al. Activation of central nervous system inflammatory pathways by interfer-on-alpha: relationship to monoamines and depression. Biol Psychiatry. 2009; 65 (4):296–303.

  115. Maes M. The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol Lett. 2008; 29(3):287–91.

  116. Gleason OC, Yates WR. Five cases of interferonalpha- induced depression treated with antidepressant therapy. Psychosomatics. 1999; 40(6):510-2

  117. Maes M. The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol Lett. 2008; 29(3):287- 91.

  118. Lasoń W, Budziszewska B, Basta-Kaim A, Kubera M, Maes M. New trends in the neurobiology and pharmacology of affective disorders. Pharmacol Rep. 2013; 65 (6):1441-50.

  119. Eisenberger NI, Berkman ET, Inagaki TK, Rameson LT, Mashal NM, Irwin MR. Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiatry. 2010; 68 (8):748–54.

  120. Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety. 2013; 30 (4):297–306.

  121. 121. Sánchez, P.T., Sirera, R. , Peiró, G. y Palmero, F. Estrés, depresión, inflamación y dolor. REME. 2008; XI (28): 1-15.

  122. Páez X, Hernández L, Baptista T. [Advances in the molecular treatment of depression]. Rev Neurol. 2003; 37(5):459-70.

  123. Leonard BE. The immune system, depression and the action of antidepressants. Prog Neuropsychopharmacol Biol Psychiat. 2001; 25: 76780.

  124. Motivala SJ, Sarfatti A, Olmos L, Irwin MR. Inflammatory markers and sleep disturbance in major depression. Psychosom Med. 2005; 67(2):187–94.

  125. Lamers F, Vogelzangs N, Merikangas KR, de Jonge P, Beekman AT, Penninx BW. Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atypical depression. Mol Psychiatry. 2013; 18(6):692–9.

  126. Rudolf S, Greggersen W, Kahl KG, Hüppe M, Schweiger U. Elevated IL-6 lev-els in patients with atypical depression but not in patients with typical depres-sion. Psychiatry Res. 2014; 217(1–2):34–8.

  127. Myint AM, Leonard BE, Steinbusch HW, Kim YK. Th1, Th2, and Th3 cyto-kine alterations in major depression. J Affect Disord. 2005; 88 (2):167–73.

  128. Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H. Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology. 2000; 22 (4):370–9.

  129. 129Tuglu C, Kara SH, Caliyurt O, Vardar E, Abay E. Increased serum tumor necrosis factor-alpha levels and treatment response in major depressive disorder. Psychopharmacology (Berl). 2003; 170 (4):429–33.

  130. Hannestad J, DellaGioia N, Bloch M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology. 2011; 36(12):2452–9.

  131. Petty F, Schiesser MA. Plasma GABA in affective illness. A preliminary investigation. J Affect Disord. 1981; 3:339–343.

  132. 132Petty F, Sherman AD. Plasma GABA levels in psychiatric illness. J Affect Disord. 1984; 6:131– 138.

  133. Luscher B, Shen Q, Sahir N. The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry. 2011; 16 (4):383-406.

  134. Gerner RH, Hare TA. GABA in normal subjects and patients with depression, schizophrenia, mania, and anorexia nervosa. Am J Psychiatry. 1981; 138:1098– 1101.

  135. Honig A, Bartlett JR, Bouras N, Bridges PK. Amino acid levels in depression: a preliminary investigation. J Psychiatr Res. 1988; 22:159–164.

  136. Francis PT, Poynton A, Lowe SL, Najlerahim A, Bridges PK, Bartlett JR, et al. Brain amino acid concentrations and Ca2+-dependent release in intractable depression assessed antemortem. BrainRes. 1989; 494:315–324.

  137. Petty F. Plasma concentrations of gammaaminobutyric acid (GABA) and mood disorders: a blood test for manic depressive disease? Clin Chem. 1994; 40:296–302.

  138. Sanacora G, Mason GF, Rothman DL, Behar KL, Hyder F, Petroff OA, et al. Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 1999; 56:1043– 1047.

  139. Sanacora G, Gueorguieva R, Epperson CN, Wu YT, Appel M, Rothman DL, et al. Subtypespecific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry. 2004; 61:705–713

  140. Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC. Reduced prefrontal glutamate/ glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 2007; 64:193–200.

  141. Bhagwagar Z, Wylezinska M, Jezzard P, Evans J, Boorman E, Matthews PM, et al. Low GABA concentrations in occipital cortex and anterior cingulate cortex in medication-free, recovered depressed patients. Int J Neuropsychopharmacol. 2008; 11:255–260.

  142. Rajkowska G, O'Dwyer G, Teleki Z, Stockmeier CA, Miguel-Hidalgo JJ. GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology. 2007; 32:471–482.

  143. Petty F, Kramer GL, Fulton M, Moeller FG, Rush AJ. Low plasma GABA is a trait-like marker for bipolar illness. Neuropsychopharmacology. 1993; 9:125– 132.

  144. Trullas R, Skolnick P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol. 1990; 185 (1):1-1

  145. Konarski JZ, McIntyre RS, Kennedy SH, Rafi-Tari S, Soczynska JK, Ketter TA. Volumetric neuroimaging investigations in mood disorders: bipolar disorder versus major depressive disorder. Bipolar Disord. 2008; 10(1):1-37.

  146. Tamminga CA, Nemeroff CB, Blakely RD, Brady L, Carter CS, Davis KL, et al. Developing novel treatments for mood disorders: accelerating discovery. Biol Psychiatry. 2002; 52: 589609.

  147. McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. Brain Res. 2000; 886: 17289.

  148. Holmes A, Wellman CL. Stress-induced prefrontal reorganization and executive dysfunction in rodents. Neurosci Biobehav Rev. 2009; 33(6):773-83..

  149. Gould TD, Zanos P, Zarate CA Jr. Ketamine Mechanism of Action: Separating the Wheat from the Chaff. Neuropsychopharmacology. 2017; 42(1):368- 369.

  150. Moghaddam B, Boliano ML, SteinBehrens B, Sapolsky R. Glucocorticoids mediate the stressinduced extracellular accumulation of glutamate. Brain Res. 1994; 655: 2514.

  151. Koolschijn PC, van Haren NE, Lensvelt-Mulders GJ, Hulshoff Pol HE, Kahn RS. Brain volume abnormalities in major depressive disorder: a metaanalysis of magnetic resonance imaging studies. Hum Brain Mapp. 2009; 30 (11):3719-35.

  152. Lorenzetti V, Allen NB, Fornito A, Yücel M. Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. J Affect Disord. 2009;117(1-2):1-17.

  153. Christopher Pittenger1 and Ronald S Duman Stress, Depression, and Neuroplasticity: A Convergence of Mechanisms. Neuropsychopharmacology. 2008; 33: 88–109

  154. Jack M. Gorman , M.D. John P. Docherty , M.D. A Hypothesized Role for Dendritic Remodeling in the Etiology of Mood and Anxiety Disorders. 2010; 22 (3): 256-264.

  155. Bruce S. McEwen. Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. 2005; 54 (5): 20–23.

  156. Norrholm SD, Ouimet CC. Altered dendritic spine density in animal models of depression and in response to antidepressant treatment. Synapse. 2001; 42 (3):151-63.

  157. Bessa JM, Ferreira D, Melo I, Marques F, Cerqueira JJ, Palha JA, Almeida OF, Sousa N. The moodimproving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry. 2009; 14(8):764-73, 739.

  158. Ising M, Horstmann S, Kloiber S. Combined Dexamethasone/corticotropin releasing hormone test predicts treatment response in major depression a potential biomarker? Biol Psychiatry. 2007; 62:47– 54.

  159. Sullivan, P.F., Neale, M.C., and Kendler, K.S.. Genetic epidemiology of major depression: review and meta-analysis. Am. J. Psychiatry. 2000; 157, 1552–1562.

  160. Kendler, K.S., Gardner, C.O., Neale, M.C., and Prescott, C.A. Genetic risk factors for major depression in men and women: similar or different heritabilities and same or partly distinct genes? Psychol. Med. 2001; 31, 605–616.

  161. Kendler, K.S., Gatz, M., Gardner, C.O., and Pedersen, N.L. A Swedish national twin study of lifetime major depression. Am. J. Psychiatry. 2006; 163: 109–114.

  162. López-León, S., Janssens, A.C., Gonza´ lez-Zuloeta Ladd, A.M., Del-Favero, J., Claes, S.J., Oostra, B.A., and van Duijn, C.M. . Meta-analyses of genetic studies on major depressive disorder. Mol. Psychiatry. 2008; 13 772–785.

  163. Bosker, F.J., Hartman, C.A., Nolte, I.M., Prins, B.P., Terpstra, P., Posthuma, D., van Veen, T., Willemsen, G., DeRijk, R.H., de Geus, E.J. Poor replication of candidate genes for major depressive disorder using genome-wide association data. Mol. Psychiatry. 2011; 16: 516–532.

  164. Troxel WM, Kupfer DJ, Reynolds CF 3rd, Frank E, Thase ME, Miewald JM, Buysse DJ. Insomnia and objectively measured sleep disturbances predict treatment outcome in depressed patients treated with psychotherapy or psychotherapy-pharmacotherapy combinations. J Clin Psychiatry. 2012; 73(4):478-85.

  165. Uher R, McGuffin P. The moderation by the serotonin transporter gene of environmental adversity in the etiology of depression: 2009 update. Mol Psychiatry. 2010; 15(1):18-22.

  166. Cerasa A, Gioia MC, Labate A, Liguori M, Lanza P, Quattrone A. Impact of catechol-O-methyltransferase Val(108/158) Met genotype on hippocampal and prefrontal gray matter volume. Neuroreport. 2008; 19(4):405-8.

  167. Blumberg HP, Wang F, Chepenik LG, Kalmar JH, Edmiston E, Duman RS, Gelernter J. Influence of vascular endothelial growth factor variation on human hippocampus morphology. Biol Psychiatry. 2008; 64(10):901-3.

  168. Zobel A, Jessen F, von Widdern O, Schuhmacher A, Höfels S, Metten M, Rietschel M, Scheef L, Block W, Becker T, Schild HH, Maier W, Schwab SG. Unipolar depression and hippocampal volume: impact of DNA sequence variants of the glucocorticoid receptor gene. Am J Med Genet B Neuropsychiatr Genet. 2008; 147 (6):836-43.

  169. Lekman M, Laje G, Charney D, Rush AJ, Wilson AF, Sorant AJ, Lipsky R, Wisniewski SR, Manji H, McMahon FJ, Paddock S. FKBP5-gene in depression and treatment response--an association study in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Cohort. Biol Psychiatry. 2008; 63 (12):1103-10.

  170. Menke A, Klengel T, Rubel J, Brückl T, Pfister H, Lucae S, Uhr M, Holsboer F, Binder EB. Genetic variation in FKBP5 associated with the extent of stress hormone dysregulation in major depression. Genes Brain Behav. 2013; 12 (3):289-96.

  171. Fuchikami M, Morinobu S, Segawa M, Okamoto Y, Yamawaki S, Ozaki N, Inoue T, Kusumi I, Koyama T, Tsuchiyama K, Terao T. DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression. PLoS One. 2011; 6 (8):e23881.

  172. Kang HJ, Kim JM, Lee JY, Kim SY, Bae KY, Kim SW, Shin IS, Kim HR, Shin MG, Yoon JS. BDNF promoter methylation and suicidal behavior in depressive patients. J Affect Disord. 2013; 151(2):679-85.

  173. Song Y, Miyaki K, Suzuki T, Sasaki Y, Tsutsumi A, Kawakami N, Shimazu A, Takahashi M, Inoue A, Kan C, Kurioka S, Shimbo T. Altered DNA methylation status of human brain derived neurotrophis factor gene could be useful as biomarker of depression. Am J Med Genet B Neuropsychiatr Genet. 2014; 165 (4):357-64.

  174. Stöber G, Heils A, Lesch KP. Serotonin transporter gene polymorphism and affective disorder. Lancet. 1996; 347 (9011):1340-1.

  175. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003; 301 (5631):386-9.

  176. Holsboer F. Antidepressant drug discovery in the postgenomic era. World J Biol Psychiatry. 2001; 2(4):165-77.

  177. Artigas F, Nutt DJ, Shelton R. Mechanism of action of antidepressants. Psychopharmacol Bull. 2002; 36 Suppl 2:123-32.

  178. Nestler EJ. Antidepressant treatments in the 21st century. Biol Psychiatry. 1998; 44(7):526-33.

  179. Hajós M, Fleishaker JC, Filipiak-Reisner JK, Brown MT, Wong EH. The selective norepinephrine reuptake inhibitor antidepressant reboxetine: pharmacological and clinical profile. CNS Drug Rev. 2004; 10(1):23-44

  180. Page ME. The promises and pitfalls of reboxetine. CNS Drug Rev. 2003; 9(4):327-42.

  181. Ferguson JM, Mendels J, Schwart GE. Effects of reboxetine on Hamilton Depression Rating Scale factors from randomized, placebo-controlled trials in major depression. Int Clin Psychopharmacol. 2002; 17(2):45-51.

  182. Preskorn SH. Tianeptine: a facilitator of the reuptake of serotonin and norepinephrine as an antidepressant? J Psychiatr Pract. 2004; 10(5):323-30.

  183. Cipriani A, Barbui C, Butler R, Hatcher S, Geddes J. Depression in adults: drug and physical treatments. BMJ Clin Evid. 2011; 2011: pii: 1003.

  184. Andrews JM, Ninan PT, Nemeroff CB. Venlafaxine: a novel antidepressant that has a dual mechanism of action. Depression. 1996; 4 (2): 48-56

  185. Hardy J, Argyropoulos S, Nutt DJ. Venlafaxine: a new class of antidepressant. Hosp Med. 2002; 63(9):549-52.

  186. Pacher P, Kohegyi E, Kecskemeti V, Furst S. Current trends in the development of new antidepressants. Curr Med Chem. 2001; 8(2): 89-100.

  187. Nemeroff CB. Introduction. Norepinephrine: neurotransmitter for the millennium. J Clin Psychiatry. 2000; 61 Suppl 10:3-4.

  188. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron. 2002 Mar 28; 34(1):13-25.

  189. Goodwin G, Fleischhacker W, Arango C, Baumann P, Davidson M, de Hert M, Falkai P, Kapur S, Leucht S, Licht R, Naber D, O'Keane V, Papakostas G, Vieta E, Zohar J. Advantages and disadvantages of combination treatment with antipsychotics. Eur Neuropsychopharmacol. 2009; 19 (7): 520-32

  190. Stahl SM, Fava M, Trivedi MH, Caputo A, Shah A, Post A. Agomelatine in the treatment of major depressive disorder: an 8-week, multicenter, randomized, placebo-controlled trial. J Clin Psychiatry. 2010; 71(5):616-26.

  191. Turner EH, Rosenthal R. Efficacy of antidepressants. BMJ. 2008; 336 (7643):516-7.

  192. Cuijpers P, Dekker J, Hollon SD, Andersson G. Adding psychotherapy to pharmacotherapy in the treatment of depressive disorders in adults: a metaanalysis. J Clin Psychiatry. 2009; 70 (9):1219-29.

  193. Cuijpers P, van Straten A, Hollon SD, Andersson G. The contribution of active medication to combined treatments of psychotherapy and pharmacotherapy for adult depression: a meta-analysis. Acta Psychiatr Scand. 2010; 21 (6):415-23.

  194. Wolf NJ, Hopko DR. Psychosocial and pharmacological interventions for depressed adults in primary care: a critical review. Clin Psychol Rev. 2008; 28(1):131-61.

  195. Beck AT. Cognitive therapy: nature and relation to behavior therapy. Behav.Ther. 1970; 1:184–200.

  196. Beck AT, Rush AJ, Shaw BF, Emery G. Cognitive Therapy of Depression. New York, Guilford; 1979.

  197. Beck AT. ‘‘Cognitive Therapy of Depression: New Perspectives,’’ in Treatment of Depression: Old Controversies and New Approaches, ed. Clayton PJ, Barrett JE. New York, Raven Press; 1982:265–290.

  198. Gloaguen V, Cottraux J, Cucherat M, Blackburn IM. A meta-analysis of the effects of cognitive therapy in depressed patients. J Affect Disord. 1998 Apr;49(1):59-72.

  199. Hollon SD, Muñoz RF, Barlow DH, Beardslee WR, Bell CC, Bernal G, Clarke GN, Franciosi LP, Kazdin AE, Kohn L, Linehan MM, Markowitz JC, Miklowitz DJ, Persons JB, Niederehe G, Sommers D. Psychosocial intervention development for the prevention and treatment of depression: promoting innovation and increasing access.Biol Psychiatry. 2002 Sep 15;52(6):610-30.

  200. DeRubeis RJ, Hollon SD, Amsterdam JD, Shelton RC, Young PR, Salomon RM, et al. Cognitive therapy vs. medications in the treatment of moderate to severe depression. Arch. Gen. Psychiat. 2005; 62:409–436.

  201. Hollon SD, DeRubeis RJ, Evans MD,Weimer MJ, Garvey MJ, Grove WM, Tuason VB. Cognitive therapy and pharmacotherapy for depression: singly and in combination. Arch. Gen. Psychiat. 1992; 49:774–781.

  202. Beck AT, Hollon SD, Young JE, Bedrosian RC, Budenz D. Treatment of depression with cognitive therapy and amitriptyline. Arch. Gen. Psychiat. 1985; 42:142–148.

  203. Murphy GE, Simons AD, Wetzel RD, Lustman PJ. Cognitive therapy and pharmacotherapy: singly and together in the treatment of depression. Arch. Gen. Psychiat. 1984; 41:33–41.

  204. Blackburn IM, Bishop S, Glen AIM, Whalley LJ, Christie JE. The efficacy of cognitive therapy in depression: A treatment trial using cognitive therapy and pharmacotherapy, each alone and in combination. Brit. J. Psychiat. 1981; 139:181–189.

  205. Hollon SD, Shelton RC, Wisniewski S, Warden D, Biggs MM, Friedman ES, Husain M, Kupfer DJ, Nierenberg AA, Petersen TJ, Shores-Wilson K, Rush AJ. Presenting characteristics of depressed outpatients as a function of recurrence: preliminary findings from the STAR*D clinical trial. J Psychiatr Res. 2006 Feb;40(1):59-69. Epub 2005 Oct 21.

  206. Chambless DL, Ollendick TH. Empirically supported psychological interventions: controversies and evidence. Ann. Rev. Psych. 2001; 52:685–716.

  207. Hamilton KE, Dobson KS. Cognitive therapy of depression: pretreatment patient predictors of outcome. Clin Psychol Rev. 2002 Jul;22(6):875-93.

  208. Whisman MA.Mediators and moderators of change in cognitive therapy of depression. Psychol Bull. 1993 Sep;114(2):248-65

  209. Schramm E, Schneider D, Zobel I, van Calker D, Dykierek P, Kech S, Härter M, Berger M. Efficacy of Interpersonal Psychotherapy plus pharmacotherapy in chronically depressed inpatients. J Affect Disord. 2008; 109(1-2):65-73.

  210. UrsanoRJ, Silberman EK. “Psychoanalysis, psychoanalytic psycotherapy, and supportive psychotherapy.” In Textbook of Psychiatric, Ed. Hales RE, Yudofsky SC, Talbott JA. Washington, DC, American psychiatric press; 1999. 479-565.

>Journals >Revista Biomédica >Year 2017, Issue 2

· Journal Index 
· Links 

Copyright 2019