medigraphic.com
SPANISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2017, Number 5

<< Back Next >>

salud publica mex 2017; 59 (5)

Dietary determinants of urinary molybdenum levels in Mexican women: a pilot study

Barrios PL, Vázquez-Salas RA, López-Carrillo L, Menezes-Filho JA, Torres-Sánchez L
Full text How to cite this article

Language: English
References: 36
Page: 548-555
PDF size: 316.66 Kb.


Key words:

diet, micronutrient, molybdenum.

ABSTRACT

Objective. This study determined the main dietary sources of urinary molybdenum (Mo) concentrations in a sample of 124 pregnant women in Mexico. Materials and methods. Dietary data was collected during pregnancy, through a semiqualitative food frequency questionnaire, with information of 84 foods. Urine Mo levels were determined by atomic absorption spectrometry, for at least two trimesters of pregnancy. The associations with Mo levels were estimated by generalized mixed effect regression models. Results. Between 5.8 to 12.7% of the samples were above the 95th percentile of urinary Mo distribution reported by National Health and Nutrition Examination Survey (NHANES) 2009-2010 for women (151 µg/L and 148 µg/g creatinine). After bootstrap resampling was conducted, women with high-consumption of hot peppers (β=1.34µg/g; 95% CI: 1.00-1.80; p= 0.05) had marginally higher urinary Mo concentration levels, creatinine adjusted, compared to women with low-consumption. Conclusion. Hot chili pepper consumption may contribute to body burden Mo levels in this population.


REFERENCES

  1. Rajagopalan KV. Molybdenum: an essential trace element in human nutrition. Annu Rev Nutr 1988;8:401-427. https://doi.org/10.1146/annurev. nu.08.070188.002153

  2. Schwarz G, Mendel RR, Ribbe MW. Molybdenum cofactors, enzymes and pathways. Nature 2009;460:839-847. https://doi.org/10.1038/nature08302

  3. Kaiser BN, Gridley KL, Ngaire-Brady J, Phillips T, Tyerman SD. The role of molybdenum in agricultural plant production. Ann Bot 2005;96:745-754. https://doi.org/10.1093/aob/mci226

  4. Tsongas TA, Meglen RR, Walravens PA, Chappell WR. Molybdenum in the diet: an estimate of average daily intake in the United States. Am J Clin Nutr 1980;33:1103-117.

  5. Pennington JA, Jones JW. Molybdenum, nickel, cobalt, vanadium, and strontium in total diets. J Am Diet Assoc 1987;87:1644-1650.

  6. Rose M, Baxter M, Brereton N, Baskaran C. Dietary exposure to metals and other elements in the 2006 UK Total Diet Study and some trends over the last 30 years. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010;27(13):80-404. https://doi.org/10.1080/19440049. 2010.496794

  7. Turnlund JR, Keyes WR, Peiffer GL. Molybdenum absorption, excretion, and retention studied with stable isotopes in young men at five intakes of dietary molybdenum. Am J Clin Nutr 1995;62:790-796.

  8. Turnlund JR, Keyes WR. Plasma molybdenum reflects dietary molybdenum intake. J Nutr Biochem 2004;15:90-95. https://doi.org/10.1016/j. jnutbio.2003.10.003

  9. Suttle NF. Recent studies of the copper-molybdenum antagonism. Proc Nutr Soc 1974;33:299-305. https://doi.org/10.1079/PNS19740053

  10. Widjajakusuma MC, Basrur PK, Robinson GA. Thyroid function in molybdenotic rabbits. J Endocrinol 1973;57:419-424. https://doi.org/10.1677/ joe.0.0570419

  11. Pitt MA. Molybdenum toxicity: Interactions between copper, molybdenum and sulphate. Agents and Actions 1976;6:758-769. https://doi. org/10.1007/BF02026100

  12. Bompart G, Pecher C, Prevot D, Girolami JP. Mild Renal-Failure Induced by Subchronic Exposure to Molybdenum - Urinary Kallikrein Excretion as a Marker of Distal Tubular Effect. Toxicology Letters 1990;52:293-300. https://doi.org/10.1016/0378-4274(90)90039-O

  13. Koval’skiy V, Yarovaya G, Shmavonyan D. Changes of purine metabolism in man and animals under conditions of molybdenum biogeochemical provinces. Zh Obshch Biol 1961;22:179-191.

  14. Walravens PA, Moure-Eraso R, Solomons CC, Chappell WR, Bentley G. Biochemical abnormalities in workers exposed to molybdenum dust. Arch Environ Health 1979;34:302-308. https://doi.org/10.1080/00039896.1979 .10667421

  15. Mendy A, Gasana J, Vieira ER. Urinary heavy metals and associated medical conditions in the US adult population. Int J Environ Health Res 2012;22:105-118. https://doi.org/10.1080/09603123.2011.605877

  16. Vazquez-Salas RA, Lopez-Carrillo L, Menezes-Filho JA, Rothenberg SJ, Cebrian ME, Schnaas L, et al. Prenatal molybdenum exposure and infant neurodevelopment in Mexican children. Nutr Neurosci 2014;17:72-80. https://doi.org/10.1179/1476830513Y.0000000076

  17. Torres-Sanchez L, Rothenberg SJ, Schnaas L, Cebrian ME, Osorio E, Del Carmen Hernandez M, et al. In utero p,p’-DDE exposure and infant neurodevelopment: a perinatal cohort in Mexico. Environ Health Perspect 2007;115:435-439. https://doi.org/10.1289/ehp.9566

  18. Galván-Portillo M, Torres-Sánchez L, Hernández-Ramírez RU, Anaya- Loyola MA. Cuestionario de frecuencia de consumo de alimentos para estimación de ingestión de folato en México. Salud Publica de Mex 2011;53:237-246. https://doi.org/10.1590/S0036-36342011000300008

  19. Muñoz M, Chávez A, Roldán JA, Ledesma JA, Mendoza E, Pérez-Gil F, et al. Tablas de valor nutritivo de los alimentos de mayor consumo en México. México: Instituto Nacional de Nutrición Salvador Zubirán, 1996.

  20. World Health Organization. Trace elements in human nutrition and health. Switzerland: WHO, 1996.

  21. International Molybdenum Association (IOMA). Molybdenum markets-an end-use analysis. London, United Kingdom: IOMA, 2011. Available in: http://www.imoa.info/download_files/molyreview/MolyReview_ July_2011.pdf

  22. Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect 2005;113:192-200. https://doi.org/10.1289/ehp.7337

  23. Centers for Disease Control and Prevention. Fourth Report on Human Exposure to Environmental Chemicals, Updated Tables, (March, 2013). Atlanta, GA, US: Department of Health and Human Services, 2013.

  24. Alvarado-Nava D, Velasquez-Valle R, Mena-Covarrubias J. Cosecha, postcosecha y productos agroindustriales de chile seco. México: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, 2006:195-221.

  25. Simonne AH, Simonne EH, Eitenmiller RR, Mills HA, Green NR. Ascorbic acid and provitamin a contents in unusually colored bell peppers (Capsicum annuumL.). J Food Compost Anal 1997;10:299-311. https://doi. org/10.1006/jfca.1997.0544

  26. Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N. Chilli peppers--a review on tissue culture and transgenesis. Biotechnol Adv 2010;28:35-48. https://doi.org/10.1016/j.biotechadv.2009.08.005

  27. Antonious GF, Kochhar TS. Mobility of heavy metals from soil into hot pepper fruits: a field study. Bull Environ Contam Toxicol 2009;82:59-63. https://doi.org/10.1007/s00128-008-9512-8

  28. US Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory. October 2015. USDA National Nutrient Database for Standard Reference Dataset for What We Eat In America, NHANES (Survey-SR), USDA. Available in: https://www.ars.usda.gov/Services/docs. htm?docid=25662

  29. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación de México (SAGARPA). México, principal exportador de chile verde. Zacatecas, México 2012 [accessed on May 3, 2017]. Available at: http://www.sagarpa.gob.mx/Delegaciones/zacatecas/boletines/Paginas/ B0352012.aspx#.

  30. Santoyo-Juarez JA. Manejo integral del cultivo de chile en el sur de Sinaloa. Sinaloa, México: Fundación Produce Sinaloa, 2010.

  31. Jimenez B, Drechsel P, Kone D, Bahri A, Raschid-Sally L, Qadir M. Wastewater. Sludge and excreta use in developing countries: an overview. In: Drechsel P, Scott CA, Raschid Sally L, Redwood M, Bahri A, (eds.) Wastewater irrigation and health: assessing and mitigating risk in low-income countries. London, UK: Earthscan, 2010:1-27.

  32. Trumbo P, Yates AA, Schlicker S, Poos M. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc 2001;101:294-301. https://doi.org/10.1016/S0002-8223(01)00078-5

  33. Hays SM, Macey K, Poddalgoda D, Lu M, Nong A, Aylward LL. Biomonitoring Equivalents for molybdenum. Regul Toxicol Pharmacol 2016;77:223- 229. https://doi.org/10.1016/j.yrtph.2016.03.004

  34. Hazardous Substances Data bank (HSDB). Molybdenum. Bethesda (MD): National Library of Medicine (US). Number: 5032. [updated 1/10/2008]. Available from: http://toxnet.nlm.nih.gov.

  35. Meeker JD, Rossano MG, Protas B, Diamond MP, Puscheck E, Daly D, et al. Multiple metals predict prolactin and thyrotropin (TSH) levels in men. Environ Res 2009;109:869-873. https://doi.org/10.1016/j.envres. 2009.06.004

  36. Meeker JD, Rossano MG, Protas B, Diamond MP, Puscheck E, Daly D, et al. Cadmium, lead, and other metals in relation to semen quality: human evidence for molybdenum as a male reproductive toxicant. Environ Health Perspect 2008;116:1473-1479. https://doi.org/10.1289/ehp.11490




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2017;59