medigraphic.com
SPANISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2018, Number 1

<< Back Next >>

salud publica mex 2018; 60 (1)

Dengue virus infection induces chromatin remodeling at locus AAEL006536 in the midgut of Aedes aegypti

Gleason-Rodríguez G, Castillo-Méndez M, Maya K, Ramos-Castañeda J, Valverde-Garduño V
Full text How to cite this article

Language: English
References: 27
Page: 41-47
PDF size: 487.67 Kb.


Key words:

Dengue virus, A aegypti, insect vector, transcriptional activation, chromatin, viral infection, transcription factor, binding site, innate immunity.

ABSTRACT

Objective. To identify and characterize Aedes aegypti’s AAEL006536 gene proximal upstream cis-regulatory sequences activated by dengue virus infection. Materials and methods. A. aegypti Rockefeller strain mosquitoes were blood fed or infected with dengue virus 2. Open chromatin profiling was then carried out in pools of midguts from each group of mosquitoes. Results. The proximal upstream region does not contain open chromatin sites in the midguts of blood-fed mosquitoes as detected by FAIRE-qPCR. In contrast, two cis-regulatory sites were identified in the same upstream region of dengue virus-infected mosquito midguts. The distal sequence contains STAT-, REL- and C/EBP-type transcription factor binding sites. Conclusion. The activation of two proximal cis-regulatory sequences, induced by dengue virus infection, is mediated by chromatin remodeling mechanisms. Binding sites suggest a dengue virus infectioninduced participation of immunity transcription factors in the up-regulation of this gene. This suggests the participation of the AAEL006536 gene in the mosquito’s antiviral innate immune response.


REFERENCES

  1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504-7. https://doi.org/10.1038/nature12060

  2. Lambrechts L, Scott TW, Gubler DJ. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis. 2010;4(5):e646. https://doi.org/10.1371/journal. pntd.0000646

  3. Reiner RC Jr., Achee N, Barrera R, Burkot TR, Chadee DD, Devine G J, et al. Quantifying the epidemiological impact of vector control on dengue. PLoS Negl Trop Dis. 2016;10(5):e0004588. https://doi.org/10.1371/journal. pntd.0004588

  4. Bennett KE, Olson KE, Munoz ML, Fernandez-Salas I, Farfan-Ale JA, Higgs, S, et al. Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg. 2002;67(1):85-92. https://doi.org/10.4269/ajtmh.2002.67.85

  5. Salazar MI, Richardson JH, Sánchez-Vargas I, Olson KE, Beaty BJ. Dengue Virus Type 2: Replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol. 2007;7:9. https://doi.org/10.1186/1471-2180-7-9

  6. Sim S, Jupatanakul N, Ramirez JL, Kang S, Romero-Vivas CM, Mohammed H, et al. Transcriptomic profiling of diverse Aedes aegypti strains reveals increased basal-level immune activation in dengue virus-refractory populations and identifies novel virus-vector molecular interactions. PLoS Negl Trop Dis. 2013;7(7):e2295. https://doi.org/10.1371/journal.pntd.0002295

  7. Colpitts TM, Cox J, Vanlandingham DL, Feitosa FM, Cheng G, Kurscheid S, et al. Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses. PLoS Pathog. 2011;7(9):e1002189. https://doi.org/10.1371/journal.ppat.1002189

  8. Behura SK, Severson DW. Intrinsic features of Aedes aegypti genes affect transcriptional responsiveness of mosquito genes to dengue virus Infection. Infect Genet Evol. 2012;12(7):1413-8. https://doi.org/10.1016/j. meegid.2012.04.027

  9. Behura SK, Sarro J, Li P, Mysore K, Severson DW, Emrich SJ, et al. Highthroughput cis-regulatory element discovery in the vector mosquito Aedes aegypti. BMC genomics. 2016;17:341. https://doi.org/10.1186/ s12864-016-2468-x

  10. Waterhouse R, Kriventseva EV, Meister S, Xi Z, Alvarez KS, Bartholomay LC, et al. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science. 2007;316(5832):1738-43. https://doi.org/10.1126/science.1139862

  11. Bonizzoni M, Dunn WA, Campbell CL, Olson KE, Marinotti O, James AA. Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection. PloS One. 2012;7(11):e50512. https://doi. org/10.1371/journal.pone.0050512

  12. Bonizzoni M, Dunn WA, Campbell CL, Olson KE, Marinotti O, James AA. Strain variation in the transcriptome of the dengue fever vector, Aedes aegypti. G3 (Bethesda). 2012;2(1):103-14. https://doi.org/10.1534/ g3.111.001107

  13. Souza-Neto JA, Sim S, Dimopoulos G. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci USA. 2009;106(42):17841-6. https://doi.org/10.1073/pnas.0905006106

  14. Rances E, Ye YH, Woolfit M, McGraw EA, O’Neill SL. The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLoS Path. 2012;8(2):e1002548. https://doi.org/10.1371/ journal.ppat.1002548

  15. Ramos-Castaneda J, Gonzalez C, Jimenez MA, Duran J, Hernandez- Martinez S, Rodriguez MH, et al. Effect of nitric oxide on dengue virus replication in Aedes aegypti and Anopheles albimanus. Intervirology. 2008;51(5):335-41. https://doi.org/10.1159/000175639

  16. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. FAIRE (Formaldehyde- Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res. 2007;17:877-85. https:// doi.org/10.1101/gr.5533506

  17. Nagy PL, Cleary ML, Brown PO, Lieb JD. Genomewide demarcation of RNA polymerase II transcription units revealed by physical fractionation of chromatin. Proc Natl Acad Sci USA. 2003;100(11):6364-9. https://doi. org/10.1073/pnas.1131966100

  18. Giresi PG, Lieb JD. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). Methods. 2009;48(3):233-239. https://doi.org/10.1016/j. ymeth.2009.03.003

  19. Kel AE, Gossling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, Wingender E. MATCH: A tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res. 2003;31(13):3576-9. https:// doi.org/10.1093/nar/gkg585

  20. Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, et al. TRANSFAC: Transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 2003;31(1):374-8. https://doi.org/10.1093/nar/gkg108

  21. Barillas-Mury C, Han YS, Seeley D, Kafatos FC. Anopheles gambiae Ag-STAT, a new insect member of the STAT family, is activated in response to bacterial infection. EMBO J. 1999;18(4):959-67. https://doi.org/10.1093/ emboj/18.4.959

  22. Frolet C, Thoma M, Blandin S, Hoffmann JA, Levashina EA. Boosting NF-kappaB-dependent basal immunity of Anopheles gambiae aborts development of Plasmodium berghei. Immunity. 2006;25(4):677-85. https:// doi.org/10.1016/j.immuni.2006.08.019

  23. Eggleston P, Lu W, Zhao Y. Genomic Organization and immune regulation of the defensin gene from the mosquito, Anopheles gambiae. Insect Mol Biol. 2000;9:481-490. https://doi.org/10.1046/j.1365- 2583.2000.00212.x

  24. Meredith JM, Munks RJ, Grail W, Hurd H, Eggleston P, Lehane MJ. A novel association between clustered NF-kappaB and C/EBP binding sites is required for immune regulation of mosquito defensin genes. Insect Mol Biol. 2006;15(4):393-401. https://doi.org/10.1111/j.1365-2583.2006.00635.x

  25. Rothenberg EV. The chromatin landscape and transcription factors in T cell programming. Trends Immunol. 2014;35(5):195-204. https://doi. org/10.1016/j.it.2014.03.001

  26. Behura SK, Gomez-Machorro C, Harker BW, deBruyn B, Lovin DD, Hemme RR, et al. Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection. PLoS Negl Trop Dis. 2011;5(11):e1385. https://doi.org/10.1371/journal.pntd.0001385

  27. Kingsolver MB, Huang Z, Hardy RW. Insect antiviral innate immunity: Pathways, effectors, and connections. J Mol Biol. 2013;425(24):4921-36. https://doi.org/10.1016/j.jmb.2013.10.006




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2018;60