medigraphic.com
SPANISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2018, Number 2

<< Back Next >>

salud publica mex 2018; 60 (2)

Dietary patterns and metabolic syndrome components in women with excess weight 18 to 45 years old

Hernández-Ruiz Z, Rodríguez-Ramírez S, Hernández-Cordero S, Monterrubio-Flores E
Full text How to cite this article

Language: Spanish
References: 40
Page: 158-165
PDF size: 375.30 Kb.


Key words:

dietary patterns, hyperglycemia, adult women, overweigth.

ABSTRACT

Objective. To analyze the association between dietary patterns and metabolic syndrome (MS) components in adult women with excess weight. Materials and methods. Cross-sectional study with anthropometric, dietary, biochemical and blood pressure data. Dietary patterns were identified by factor analysis and multiple logistic regression models were used to analyze associations. Results. The prevalence of altered glucose was 14.6%, of hypertriglyceridemia 40.4%, of altered concentration of high density lipoprotein cholesterol (HDLc) 45.0%, hypertension 4.6% and MS 30%. The pattern with high consumption of corn tortillas, meats and legumes, was associated with less possibility of hyperglycemia (OR= 0.62; 95%CI 0.39-0.98). The pattern with high consumption of sweet and salty snacks, milk, rice, soaps and pasta, was inversely associated with the possibility of low HDLc concentration (OR= 0.76; 95%CI 0.60-0.97). Conclusions. A dietary pattern with greater consumption of legumes, meats and corn tortillas was associated with less possibility of having hyperglycemia.


REFERENCES

  1. Mohan V, Deepa M. El síndrome metabólico en los países en desarrollo. Diabetes Voice. 2006;51:15-7.

  2. Rojas R, Aguilar-Salinas CA, Jiménez-Corona A, Shamah-Levy T, Rauda J, Ávila-Burgos L, et al. Metabolic syndrome in Mexican adults: results from the National Health and Nutrition Survey 2006. Salud Publica Mex. 2010;52(2):S11-8. https://doi.org/10.1590/S0036-36342010000700004

  3. Aekplakorn W, Satheannoppakao W, Putwatana P, Taneepanichskul S, Kessomboon P, Chongsuvivatwong V, et al. Dietary Pattern and Metabolic Syndrome in Thai Adults. J Nutr Metab. 2015;2015:1-10.

  4. Lutsey PL, Steffen LM, Stevens J. Dietary intake and the development of the metabolic syndrome: The atherosclerosis risk in communities study. Circulation. 2008;117(6):754-61. https://doi.org/10.1161/CIRCULATIONAHA. 107.716159

  5. Azadbakht L, Mirmiran P, Esmaillzadeh A, Azizi F. Dairy consumption is inversely associated with the prevalence of the metabolic syndrome in Tehranian adults. Am J Clin Nutr. 2005;82(3):523-30. https://doi. org/10.1093/ajcn/82.3.523

  6. Denova-Gutiérrez E, Talavera JO, Huitrón-Bravo G, Méndez-Hernández P, Salmerón J. Sweetened beverage consumption and increased risk of metabolic syndrome in Mexican adults. Public Health Nutr. 2010;13(6):835-42. https://doi.org/10.1017/S1368980009991145

  7. Esmaillzadeh A, Mirmiran P, Azizi F. Whole-grain consumption and the metabolic syndrome: a favorable association in Tehranian adults. Eur J Clin Nutr. 2005;59(3):353-62. https://doi.org/10.1038/sj.ejcn.1602080

  8. Song Y, Ridker PM, Manson JE, Cook NR, Buring JE, Liu S. Magnesium intake, C-reactive protein, and the prevalence of metabolic syndrome in middle-aged and older U.S. women. Diabetes Care. 2005;28(6):1438-44. https://doi.org/10.2337/diacare.28.6.1438

  9. Azadbakht L, Kimiagar M, Mehrabi Y, Esmaillzadeh A, Padyab M, Hu FB, et al. Soy inclusion in the diet improves features of the metabolic syndrome: A randomized crossover study in postmenopausal women. Am J Clin Nutr. 2007;85(3):735-41. https://doi.org/10.1093/ajcn/85.3.735

  10. Denova-Gutierrez E, Castanon S, Talavera JO, Gallegos-Carrillo K, Flores M, Dosamantes-Carrasco D, et al. Dietary Patterns Are Associated with Metabolic Syndrome in an Urban Mexican Population 1, 2. J Nutr. 2010;140:1855-63. https://doi.org/10.3945/jn.110.122671

  11. Rizzo NS, Sabaté J, Jaceldo-Siegl K, Fraser GE. Vegetarian dietary patterns are associated with a lower risk of metabolic syndrome: The Adventist Health Study 2. Diabetes Care. 2011;34(5):1225-7. https://doi. org/10.2337/dc10-1221

  12. Esmaillzadeh A, Kimiagar M, Mehrabi Y, Azadbakht L, Hu FB, Willett WC. Dietary patterns, insulin resistance, and prevalence of the metabolic syndrome in women. Am J Clin Nutr. 2007;85(3):910-8. https://doi. org/10.1093/ajcn/85.3.910

  13. Flores M, Macias N, Rivera M, Lozada A, Barquera S, Rivera-Dommarco J, et al. Dietary patterns in Mexican adults are associated with risk of being overweight or obese. J Nutr. 2010;140(10):1869-73. https://doi. org/10.3945/jn.110.121533

  14. Denova-Gutiérrez E, Castañón S, Talavera JO, Flores M, Macías N, Rodríguez-Ramírez S, et al. Dietary patterns are associated with different indexes of adiposity and obesity in an urban Mexican population. J Nutr. 2011;141(5):921-7. s://doi.org/10.3945/jn.110.132332

  15. Barquera S, Campos-Nonato I, Hernández-Barrera L, Pedroza-Tobías A, Rivera-Dommarco JA. Prevalencia de obesidad en adultos mexicanos, ENSANUT 2012. Salud Publica Mex. 2013;55(Supl. 2):151-60. https://doi. org/10.21149/spm.v55s2.5111

  16. Hernández-Cordero S, Barquera S, Rodríguez-Ramírez S, Villanueva- Borbolla MA, González de Cossio T, Dommarco JR, Popkin B. Substituting water for sugar-sweetened beverages reduced circulating triglycerides and the prevalence of metabolic syndrome in obese but not in overweight mexican women in a randomized controlled trial. J Nutr. 2014; 144:1742-52.

  17. Hernández-Cordero S, González-Castell D, Rodríguez-Ramírez S, Villanueva-Borbolla MA, Unar M, Barquera S, et. al. Design and challenges of a randomized controlled trial for reducing risk factors of metabolic syndrome in Mexican women through water intake. Salud Publica Mex. 2013;55(6):595-606. https://doi.org/10.21149/spm.v55i6.7305

  18. Grupo MexLab. Bio-Colesterol Total. Reactivo líquido para la determinación fotométrica de Colesterol total en suero o plasma. [Internet]. Zapopan, Jalisco: Grupo MexLab 2016. [consultado noviembre 2015]. Disponible en: http://www.grupomexlab.com/pdf/quimica/8001208.pdf.

  19. SPINREACT. HDL Colesterol D. Colorimétrico enzimático. Directo. Quantitative determination of HDL cholesterol. IVD [Internet]. Sant Esteve de Bas, Girona, España; 2017. [citado nov 2017]. Disponible en: http://www.spinreact.com/files/Inserts/SERIE_MINDRAY/Sustratos/MIBSIS37_ HDLc_2017.pdf

  20. SPINREACT. Quantitative determination of glucose. IVD [Internet]. Girona: Sant Esteve de Bas, 2017. [citado nov 2017]. Disponible en: http:// www.spinreact.com/files/Inserts/MD/BIOQUIMICA/MDBSIS46_GLUC_ LIQ_2017.pdf

  21. Association American Diabetes. Classification I. Standards of medical care in diabetes-2014. Diabetes Care. 2014;37(Suppl.1):14-80. https://doi. org/10.2337/dc14-S014

  22. Lohman T, Roche A, Martorrell L. Anthropometric standarization reference manual. Champaign (IL): Human Kinetics Publishers, 1988.

  23. Shamah-Levy T, Villalpando S, Rivera-Dommarco J. Manual de Procedimientos para Proyectos de Nutrición. Cuernavaca: Instituto Nacional de Salud Pública, 2006.

  24. International Diabetes Federation. The IDF consensus worldwide definition of metabolic syndrome. Brussels: International Diabetes Federation, 2006:34.

  25. Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato K, et al. Harmonizing the metabolic syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640-5. https://doi.org/10.1161/CIRCULATIONAHA. 109.192644

  26. United States Department of Agriculture. Food and nutrient database for dietary studies, 4.1. [consultado noviembre 2015]. Beltsville (MD): Agricultural Research Service, Food Surveys Research Group, 2010. Disponible en: http://www.ars.usda.gov/SP2UserFiles/Place/80400530/pdf/ fndds/fndds4_doc.pdf

  27. Hu F. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 2002;13(1):3-9.

  28. Ocke MC. Symposium 1: Innovation in diet and lifestyle assessment Evaluation of methodologies for assessing the overall diet : dietary quality scores and dietary pattern analysis. Proceedings of the Nutrition Society. 2013;(1):191-9.

  29. Vallejo PM. El Análisis Factorial en la construcción e interpretación de tests, escalas y cuestionarios. [Internet] [consultado marzo 2016]. Univ Pontif Comillas, Madrid. 2011. Disponible en: http://www.upcomillas.es/ personal/peter/investigacion/AnalisisFactorial.pdf

  30. Institute of Medicine of The National Academies. Dietary Reference Intakes: Macronutrients [Internet]. [consultado mayo 2016]. Washington, DC, 2005. Disponible en: http://www.nationalacademies.org/hmd/~/media/ Files/Activity%20Files/Nutrition/DRI-Tables/8_Macronutrient%20Summary. pdf?la=en

  31. Crouter SE, Clowers KG, Bassett DR. A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol. 2006;100:1324-31. https://doi.org/10.1152/japplphysiol.00818.2005

  32. Vyas S, Kumaranayake L. Constructing socio-economic status indices: how to use principal components analysis. Health Policy Plan. 2006;21:459-68. https://doi.org/10.1093/heapol/czl029

  33. Hernández-Ruiz Z, Rodríguez-Ramírez S, Hernández-Cordero S, Monterrubio-Flores E. Apéndices. Artículo asociación de patrones dietéticos con los componentes del sx. metabólico en mujeres con exceso de peso. 2017 [consultado noviembre 2015]. Disponible en: https://figshare. com/s/3626b17703bee24ff542

  34. Gutiérrez J, Rivera-Dommarco J, Shamah-Levy T, Villalpando-Hernández S, Franco A, Cuevas-Nasu L, et al. Encuesta Nacional de Salud y Nutrición 2012. Resultados Nacionales. Cuernavaca, México: Instituto Nacional de Salud Pública, 2012.

  35. Guevara-Cruz M, Tovar R, Aguilar-Salinas C, Medina-Vera I, Gil-Zenteno L, Hernandez-Viveros I, et al. A dietary pattern including nopal, chia seed, soy protein, and oat reduces serum triglycerides and glucose intolerance in patients with metabolic syndrome. J Nutr. 2012;142(1):64-9. https://doi. org/10.3945/jn.111.147447

  36. Lovejoy JC, Most MM, Lefevre M, Greenway FL, Rood JC. Effect of diets enriched in almonds on insulin action and serum lipids in adults with normal glucose tolerance or type 2 diabetes. Am J Clin Nutr. 2002;76(5):1000-6. https://doi.org/10.1093/ajcn/76.5.1000

  37. Stern D, Piernas C, Barquera S, Rivera JA, Popkin BM. Caloric beverages were major sources of energy among children and adults in Mexico, 1999-2012. J Nutr. 2014;144(6). https://doi.org/10.3945/jn.114.190652

  38. Hearty AP, Gibney MJ. Comparison of cluster and principal component analysis techniques to derive dietary patterns in Irish adults. Br J Nutr. 2009;101(4):598-608. https://doi.org/10.1017/S0007114508014128

  39. Fransen HP, May AM, Stricker MD, Boer JM a, Hennig C, Rosseel Y, et al. A posteriori dietary patterns: how many patterns to retain? J Nutr. 2014;144(8):1274-82.

  40. Denova-Gutiérrez E, Tucker KL, Salmerón J, Flores M, Barquera S. Relative validity of a food frequency questionnaire to identify dietary patterns in an adult Mexican population. Salud Publica Mex. 2016;58:608-16. https:// doi.org/10.21149/spm.v58i6.7842




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2018;60