medigraphic.com
SPANISH

Acta Pediátrica de México

Órgano Oficial del Instituto Nacional de Pediatría
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2018, Number S1

<< Back Next >>

Acta Pediatr Mex 2018; 39 (S1)

Glucose-6-phosphate dehydrogenase values and their impact on the number of suspected neonatal screening

Maldonado-Silva K, Hinojosa-Trejo MA, Ibarra-González I, Vela-Amieva M, Herrera-Pérez LA, Caamal-Parra G, Sulu-Huicab JE, García-Flores EP
Full text How to cite this article

Language: Spanish
References: 40
Page: 47-56
PDF size: 509.93 Kb.


Key words:

Glucose 6-phosphate, glucose-6-phosphate deficiency, newborn screening, prevalence.

ABSTRACT

Introduction: Glucose-6-phosphate dehydrogenase (dG6PD) deficiency is the most common inherited blood enzymopathy worldwide. Most G6PD deficient subjects are asymptomatic, but some of them can develop acute hemolytic anemia, neonatal jaundice or non-spherocytic chronic hemolytic anemia. In some Asiatic and Mediterranean countries with a high incidence of malaria, the newborn screening (NBS) for dG6PD is performed, but there is no universal consensus for its implementation.
Objective: To describe the enzymatic activity of G6PD in newborn (NB) bloodspot filter paper specimens, to analyze the prevalence and estimate the number of locations that must be performed in the NBS program.
Material and Methods: Retrospective study of the results of the NBS program of the Ministry of Health of Mexico. The enzymatic activity of G6PD was analyzed according on the sample transit time (time elapsed from obtaining the blood sample from the NB heel, until his arrival at the laboratory).
Results: A total of 1,076,918 RN were screened, 342,272 had adequate transit time (≤ 6 days). Enzymatic activity decreases significantly after that Time. The national birth prevalence was 4.26%, with a maximum in Veracruz, Nuevo León and Tabasco (21, 20 and 15%, respectively).
Conclusion: In the Ministry of Health of Mexico, 4.26% of the NB are dG6PD this is, one case for every 23 screened, which implies a high number of subjects to locate and evaluate in the institutions that carry out the clinical follow-up.


REFERENCES

  1. Cunningham AD, Hwang S, Mochly-Rosen D. Glucose- 6-Phosphate Dehydrogenase Deficiency and the Need for a Novel Treatment to Prevent Kernicterus. Clin Perinatol. 2016;43(2):341-54.

  2. Gómez-Manzo S, et al. Functional and Biochemical Characterization of Three Recombinant Human Glucose-6-Phosphate Dehydrogenase Mutants: Zacatecas, Vanua-Lava and Viangchan. Int J Mol Sci. 2016;17 pii: E787. doi: 10.3390/ ijms17050787.

  3. Mason PJ, Bautista JM, Gilsanz F. G6PD deficiency: the genotype-phenotype association. Blood Reviews. 2007;21(5):267-283.

  4. Hirono A, Kanno H, Miwa S, Beutler E. Pyruvate kinase deficiency and other enzymopathies of the erythrocyte. In Scriver CR, Beaudet AL, Sly WS et al, eds. The Metabolic & Molecular Bases of Inherited Disease. New York: McGraw-Hill, 2001;4637-64.

  5. Nkhoma ET, Poole C, Vannappagari V, Hall SA, Beutler E. The global prevalence of glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis. Blood Cells Mol Dis. 2009;42(3):267-78.

  6. Luzzatto L, Mehta A, Vulliamy T. Glucose-6-phosphate dehydrogenase deficiency. In: Scriver CR, et al. The Metabolic and Molecular Basis of Inherited Disease. New York: McGraw-Hill 2013: 4517-53.

  7. Cappellini M, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. The Lancet. 2008; 371(9606):64-74.

  8. Luzzatto L, et al. Glucose-6-Phosphate Dehydrogenase Deficiency. Hematol Oncol Clin North Am. 2016;30(2):373-93. doi: 10.1016/j.hoc.2015.11.006

  9. WHO working group. Glucose-6-phosphate dehydrogenase deficiency. Bull World Health Organ 1989; 67(6): 601-11

  10. Ong KIC, et al. Systematic review of the clinical manifestations of glucose-6-phosphate dehydrogenase deficiency in the Greater Mekong Subregion: implications for malaria elimination and beyond. BMJ Glob Health. 2017 19;2(3):e000415. doi: 10.1136/bmjgh-2017-000415

  11. Monteiro WM, et al. G6PD deficiency in Latin America: systematic review on prevalence and variants. Mem Inst Oswaldo Cruz. 2014;109(5):553-68.

  12. American Academy of Pediatrics. Subcommittee of hyperbilirubinemia: management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics. 2004;114(1):297-316.

  13. Santucci K, Shah B. Association of naphthalene with acute hemolytic anemia. Acad Emerg Med. 2000;7(1):42-7.

  14. Kuzniewicz MW, et al. Incidence, etiology, and outcomes of hazardous hyperbilirubinemia in newborns. Pediatrics. 2014;134(3):504-9. doi: 10.1542/peds.2014-0987.

  15. Al-Omran A, Al-Abdi S, Al-Salam Z. Readmission for neonatal hyperbilirubinemia in an area with a high prevalence of glucose-6-phosphate dehydrogenase deficiency: A hospital-based retrospective study. J Neonatal Perinatal Med. 2017; 10(2):181-9.

  16. Weng YH, et al. Clinical characteristics of G6PD deficiency in infants with marked hyperbilirubinemia. J Pediatr Hematol Oncol. 2010;32(1):11-4. doi: 10.1097/MPH.0b013e- 3181c09aec.

  17. Kaplan M, et al. Neonatal screening for glucose-6-phosphate dehydrogenase deficiency: biochemical versus ge netic technologies. Semin Perinatol. 2011 Jun;35(3):155-61. doi: 10.1053/j.semperi.2011.02.010.

  18. Beutler E. Glucose-6-phosphate dehydrogenase deficiency: a historical perspective. Blood. 2008;111(1):16-24.

  19. Arese P, De Flora A. Pathophysiology of hemolysis in glucose 6-phosphate dehydrogenase deficiency. Semin Hematol 1990;27(1):1-40.

  20. Luzzatto L, Seneca E. G6PD deficiency: a classic example of pharmacogenetics with on-going clinical implications. Br J Haematol 2014;164(4):469-80.

  21. Goyal M, Garg A, Goyal MB, Kumar S, Ramji S, Kapoor S. Newborn screening for G6PD deficiency: A 2-year data from North India. Indian J Public Health. 2015;59(2):145-8.

  22. Fu C, et al. Newborn screening of glucose-6-phosphate dehydrogenase deficiency in Guangxi, China: determination of optimal cutoff value to identify heterozygous female neonates. Sci Rep. 2018;8(1):833. doi: 10.1038/s41598- 017-17667-6.

  23. American College of Medical Genetics (ACMG)/Health Resources and Service Administration (HRSA). 2005. Newborn screening: Toward a uniform screening panel and system. http://mchb.hrsa.gov/screening/.

  24. Vaca G, Arámbula E, Esparza A. Molecular heterogeneity of glucose-6-phosphate dehydrogenase deficiency in Mexico: overall results of a 7-year project. Blood Cells Mol Dis. 2002;28(3):436-44.

  25. Vaca G y Arámbula ME. DNA sequencing analysis of several G6PD variants previously defined by PCR restriction enzyme analysis. Genet Mol Biol. 2006; 29(1):31-5

  26. Zamorano-Jiménez CA y col. Identificación molecular de la glucosa-6-fosfato deshidrogenasa (G6PD) detectada en el tamiz neonatal. Gac Med Mex. 2015; 151(1):34-41.

  27. Trigo-Madrid M, Díaz-Gallardo J, Mar-Aldana R, Ruiz-Ochoa D, Moreno-Graciano C, Martínez-Cruz P, Herrera-Pérez LA, et al. Resultados del Programa de Tamiz Neonatal Ampliado y epidemiología perinatal en los servicios de sanidad de la Secretaría de Marina Armada de México. Acta Pediatr Mex 2014; 35(6): 448-58.

  28. Ley General de Salud (2007). Disponible: http://www.salud. gob.mx/unidades/cdi/legis/lgs/index-indice.htm.

  29. Norma Técnica número 321 para la prevención del retraso mental producido por hipotiroidismo congénito. Diario Oficial de la Federación, 22/09/1988, México.

  30. Norma Oficial Mexicana NOM-034-SSA2-2013, Para la prevención y control de los defectos al nacimiento. Diario Oficial de la Federación, 24/06/2014, México.

  31. Norma Oficial Mexicana NOM-007-SSA2-2016, Para la atención de la mujer durante el embarazo, parto y puerperio, y de la persona recién nacida. Diario Oficial de la Federación, 01/04/2016, México.

  32. Kuwahata M, et al. Population screening for glucose- 6-phosphate dehydrogenase deficiencies in Isabel Province, Solomon Islands, using a modified enzyme assay on filter paper dried bloodspots. Malar J. 2010;9:223. doi: 10.1186/1475-2875-9-223.

  33. Sirdah MM, et al. National G6PD neonatal screening program in Gaza Strip of Palestine: rationale, challenges and recommendations. Clin Genet. 2016;90(3):191-8. doi: 10.1111/cge.12786.

  34. Vaca 1982 Vaca G, Ibarra B, Romero F, Olivares N, Cantú JM, Beutler E. G-6-PD Guadalajara. A new mutant associated with chronic nonspherocytic hemolytic anemia. Hum Genet. 1982;61(2):175-6.

  35. Miao JK, Chen QX, Bao LM, Huang Y, Zhang J, Wan KX, et al. Determination of optimal cutoff value to accurately identify glucose-6-phosphate dehydrogenase-deficient heterozygous female neonates. Clin Chim Acta. 2013;17(12): 131-5.

  36. Lisker R, Loria A, Cordova Ms. Studies on several genetic hematological traits of the Mexican population. Hemoglobin s, glucose-6-phosphate dehydrogenase deficiency, and other characteristics in a malarial region. Am J Hum Genet. 1965;17(2):179-87.

  37. Gómez-Manzo S, et al. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World. Int J Mol Sci. 2016;17: pii E2069.

  38. Medina MD, Vaca G, Lopez-Guido B, Westwood B, Beutler E. Molecular Genetics of Glucose-6-Phosphate Dehydrogenase Deficiency in Mexico. Blood Cells, Molecules, and Diseases.1997;23(5): 88-94.

  39. Jiang J, et al. Screening and prevention of neonatal glucose 6-phosphate dehydrogenase deficiency in Guangzhou, China. Genet Mol Res. 2014;13(2):4272-9. doi: 10.4238/2014.June.9.13.

  40. Lam ST, Cheng ML. Neonatal screening in Hong Kong and Macau. Southeast Asian J Trop Med Public Health. 2003;34 Suppl 3:73-5.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Acta Pediatr Mex. 2018;39