medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2018, Number S1

<< Back

TIP Rev Esp Cienc Quim Biol 2018; 21 (S1)

Regulation of translation mediated by rotavirus protein NSP3

Contreras-Treviño HI, Padilla-Noriega L
Full text How to cite this article

Language: Spanish
References: 49
Page: 124-133
PDF size: 775.76 Kb.


Key words:

NSP3, dimerization intermediates, proteostasis, translation inhibition.

ABSTRACT

The study of the mechanisms used by different viruses to control host cell translation and favor the expression of viral proteins has been very instructive to know fundamental cellular mechanisms that regulate translation. Species A rotavirus (RVA) NSP3 protein is capable of inhibiting the translation of cellular mRNAs as a consequence of its binding to the translation initiation factor eIF4G and of stimulating the translation of viral mRNAs as a consequence of its binding to the UGACC sequence at their 3’-end. It has been proposed that NSP3 inhibits translation by interference with the circularization of the 5’-3’-ends of cellular mRNAs mediated by eIF4E-eIF4G-PABP (poly-A binding protein), and simultaneously it has been proposed that NSP3 stimulates translation of RVA mRNAs by circularization, in a way analogous to that performed by PABP on cellular mRNAs. However, the importance of NSP3 dimerization assisted by chaperone HSP90 in its inhibitory function of cell translation is unknown. Recently, the importance of NSP3 dimerization intermediates on its inhibitory function on host cell translation was explored, and it was found that point mutations in the coiled-coil region affect the formation of NSP3 dimers and partially preserve its host cell translation inhibitory function. In addition, it was found that NSP3 dimers degrade more rapidly than dimerization intermediates. These data demonstrate that the function of NSP3 is acquired prior to the appearance of dimers and suggests that the proteasome susceptibility of the different oligomeric forms of NSP3 are relevant in the establishment of the inhibitory function of cell translation.


REFERENCES

  1. Arnold, M.M., Brownback, C.S., Taraporewala, Z.F. & Patton, J.T. (2012). Rotavirus variant replicates efficiently although encoding an aberrant NSP3 that fails to induce nuclear localization of poly(A)-binding protein. J. Gen. Virol., 93(Pt 7), 1483–1494. https://doi.org/10.1099/vir.0.041830-0

  2. Castello, A., Álvarez, E. & Carrasco, L. (2011). The multifaceted poliovirus 2A protease: Regulation of gene expression by picornavirus proteases. J. Biomed. Biotechnol., 2011, 1-23. https://doi.org/10.1155/2011/369648

  3. Contreras-Treviño, H.I., Reyna-Rosas, E., León-Rodríguez, R., Ruiz- Ordaz, B.H., Dinkova, T.D., Cevallos, A.M. & Padilla-Noriega, L. (2017). Species A rotavirus NSP3 acquires its translation inhibitory function prior to stable dimer formation. PLoS One, 12(7), 1–18. https://doi.org/10.1371/journal.pone.0181871

  4. Crawford, S.E., Ramani, S., Tate, J.E., Parashar, U.D., Svensson, L., Hagbom, M., Franco, M.A., Greenberg, H.B., O’Ryan, M., Kang, G., Desselberger, U. & Estes, M.K. (2017). Rotavirus infection. Nat. Rev. Dis. Prim., 3(17083), 1–16. https://doi. org/10.1038/nrdp.2017.83

  5. Deo, R.C., Groft, C.M., Rajashankar, K.R. & Burley, S.K. (2002). Recognition of the rotavirus mRNA 3’ consensus by an asymmetric NSP3 homodimer. Cell, 108(1), 71–81.

  6. Desselberger, U. (2014). Rotaviruses. Virus Res., 190, 75–96. https:// doi.org/10.1016/j.virusres.2014.06.016

  7. Dormitzer, P.R., Sun, Z.-Y.J., Blixt, O., Paulson, J.C., Wagner, G. & Harrison, S.C. (2002a). Specificity and affinity of sialic acid binding by the rhesus rotavirus VP8* core. J. Virol., 76(20), 10512–10517. https://doi.org/10.1128/JVI.76.20.10512

  8. Dormitzer, P.R., Sun, Z.-Y.J., Wagner, G. & Harrison, S.C. (2002b). The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J., 21(5), 885–897. https://doi.org/10.1093/emboj/21.5.885

  9. Dutta, D., Chattopadhyay, S., Bagchi, P., Halder, U.C., Nandi, S., Mukherjee, A., Kobayashi, N., Taniguchi, K. & Chawla-Sarkar, M. (2011). Active participation of cellular chaperone Hsp90 in regulating the function of rotavirus nonstructural protein 3 (NSP3). J. Biol. Chem., 286(22), 20065–20077. https://doi. org/10.1074/jbc.M111.231878

  10. Estes, M.K. & Greenberg, H.B. (2013). Rotaviruses, in: Fields Virology. Vol. 2. Lippincott Williams & Wilkins, Philadelphia, PA., 1347-1401.

  11. Fields, B.N., Knipe, D.M. & Howley, P.M. (2013). Fields Virology, 6th Edition, Fields Virology. Lippincott Williams & Wilkins, Philadelphia, PA., 1-2418. https://doi.org/10.1093/cid/ciu346

  12. Gratia, M., Sarot, E., Vende, P., Charpilienne, A., Baron, C.H., Duarte, M., Pyronnet, S. & Poncet, D (2015). Rotavirus NSP3 Is a Translational Surrogate of the Poly(A) Binding Protein- Poly(A) Complex. J. Virol., 89(17), 8773–8782. https://doi. org/10.1128/JVI.01402-15

  13. Gratia, M., Vende, P., Charpilienne, A., Baron, H.C., Laroche, C., Sarot, E., Pyronnet, S., Duarte, M. & Poncet, D. (2016). Challenging the Roles of NSP3 and Untranslated Regions in Rotavirus mRNA Translation. PLoS One, 11(1), 1–24. https:// doi.org/10.1371/journal.pone.0145998

  14. Groft, C.M. & Burley, S.K. (2002). Recognition of eIF4G by rotavirus NSP3 reveals a basis for mRNA circularization. Mol. Cell, 9(6), 1273–1283.

  15. Harb, M., Becker, M.M., Vitour, D., Baron, C.H., Vende, P., Brown, S.C., Bolte, S., Arold, S.T. & Poncet, D. (2008). Nuclear localization of cytoplasmic poly(A)-binding protein upon rotavirus infection involves the interaction of NSP3 with eIF4G and RoXaN. J. Virol., 82(22), 11283–11293. https:// doi.org/10.1128/JVI.00872-08

  16. Hartl, F.U., Bracher, A. & Hayer-Hartl, M. (2011). Molecular chaperones in protein folding and proteostasis. Nature, 475(7356), 324–332. https://doi.org/10.1038/nature10317

  17. Hinnebusch, A.G. (2014). The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem., 83, 779–812. https:// doi.org/10.1146/annurev-biochem-060713-035802

  18. Hinnebusch, A.G. & Lorsch, J.R. (2012). The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb. Perspect. Biol., 4(10), 1–25. https://doi.org/10.1101/ cshperspect.a011544

  19. Ito, H., Sugiyama, M., Masubuchi, K., Mori, Y. & Minamoto, N. (2001). Complete nucleotide sequence of a group A avian rotavirus genome and a comparison with its counterparts of mammalian rotaviruses. Virus Res., 75(2), 123–138. https:// doi.org/10.1016/S0168-1702(01)00234-9

  20. Iwasaki, S., Ingolia, N.T., Morisaki, T., Wu, B., Eliscovich, C., Yoon, Y.J., Singer, R.H., Yan, X., Hoek, T.A., Vale, R.D., Tanenbaum, M.E., Wang, C., Han, B., Zhou, R., Zhuang, X., Ingolia, N.T., Lareau, L.F., Weissman, J.S., Shah, P., Ding, Y., Niemczyk, M., Kudla, G., Plotkin, J.B., Mukherjee, C., Jackson, R.J., Hellen, C.U., Pestova, T. V., Jung, H., Gkogkas, C.G., Sonenberg, N., Holt, C.E. & Shieh, Y.W. (2016). Seeing translation. Science, (80-) 352(6292), 1425–1429. https://doi.org/10.1126/science.aag1039

  21. Jackson, R.J., Hellen, C.U.T. & Pestova, T. V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol., 11(2), 113–127. https:// doi.org/10.1038/nrm2838

  22. Jayaram, H., Estes, M.K. & Prasad, B.V.V. (2004). Emerging themes in rotavirus cell entry, genome organization, transcription and replication. Virus Res., 101(1), 67–81. https://doi.org/10.1016/j. virusres.2003.12.007

  23. Keryer-Bibens, C., Legagneux, V., Namanda-Vanderbeken, A., Cosson, B., Paillard, L., Poncet, D. & Osborne, H.B. (2009). The rotaviral NSP3 protein stimulates translation of polyadenylated target mRNAs independently of its RNA-binding domain. Biochem. Biophys. Res. Commun., 390(2), 302–306. https:// doi.org/10.1016/j.bbrc.2009.09.115

  24. Khacho, M., Mekhail, K., Pilon-Larose, K., Pause, A., Cote, J. & Lee, S. (2008). eEF1A Is a Novel Component of the Mammalian Nuclear Protein Export Machinery. Mol. Biol. Cell., 19(12), 5296–5308. https://doi.org/10.1091/mbc.E08-06-0562

  25. Kumar, G.R., Shum, L. & Glaunsinger, B.A. (2011). Importin alphamediated nuclear import of cytoplasmic poly(A) binding protein occurs as a direct consequence of cytoplasmic mRNA depletion. Mol. Cell. Biol., 31(15), 3113–3125. https://doi. org/10.1128/MCB.05402-11

  26. Leppek, K. & Stoecklin, G. (2014). An optimized streptavidin-binding RNA aptamer for purification of ribonucleoprotein complexes identifies novel ARE-binding proteins. Nucleic Acids Res., 42(2), 1–15. https://doi.org/10.1093/nar/gkt956

  27. Ludert, J.E., Michelangeli, F., Gil, F., Liprandi, F. & Esparza, J. (1987). Penetration and Uncoating of rotaviruses in Cultured Cells. Intervirology, 27(2), 95–101. https://doi. org/10.1159/000149726

  28. Matthijnssens, J., Ciarlet, M., McDonald, S.M., Attoui, H., Bányai, K., Brister, J.R., Buesa, J., Esona, M.D., Estes, M.K., Gentsch, J.R., Iturriza-Gómara, M., Johne, R., Kirkwood, C.D., Martella, V., Mertens, P.P.C., Nakagomi, O., Parreño, V., Rahman, M., Ruggeri, F.M., Saif, L.J., Santos, N., Steyer, A., Taniguchi, K., Patton, J.T., Desselberger, U. & Van Ranst, M. (2011). Uniformity of rotavirus strain nomenclature proposed by the rotavirus Classification Working Group (RCWG). Arch. Virol., 156(8), 1397–1413. https://doi.org/10.1007/s00705- 011-1006-z

  29. Matthijnssens, J., Ciarlet, M., Rahman, M., Attoui, H., Bányai, K., Estes, M.K., Gentsch, J.R., Iturriza-Gómara, M., Kirkwood, C.D., Martella, V., Mertens, P.P.C., Nakagomi, O., Patton, J.T., Ruggeri, F.M., Saif, L.J., Santos, N., Steyer, A., Taniguchi, K., Desselberger, U. & Van Ranst, M. (2008). Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch. Virol., 153(8), 1621–1629. https://doi. org/10.1007/s00705-008-0155-1

  30. Mattion, N.M., Cohen, J., Aponte, C. & Estes, M.K. (1992). Characterization of an oligomerization domain and RNAbinding properties on rotavirus nonstructural protein NS34. Virology, 190, 68–83. https://doi.org/10.1016/0042- 6822(92)91193-X

  31. Montero, H., Arias, C.F. & López, S., 2006. Rotavirus Nonstructural Protein NSP3 is not required for viral protein synthesis. J. Virol., 80(18), 9031–9038. https://doi.org/10.1128/JVI.00437-06

  32. Montero, H., Rojas, M., Arias, C.F. & López, S. (2008). Rotavirus infection induces the phosphorylation of eIF2alpha but prevents the formation of stress granules. J. Virol., 82(3), 1496–1504. https://doi.org/10.1128/JVI.01779-07

  33. Novoa, I. & Carrasco, L. (1999). Cleavage of eukaryotic translation initiation factor 4G by exogenously added hybrid proteins containing poliovirus 2Apro in HeLa cells: effects on gene expression. Mol. Cell. Biol., 19(4), 2445–2454.

  34. Padilla-Noriega, L., Paniagua, O. & Guzmán-León, S. (2002). Rotavirus Protein NSP3 Shuts Off Host Cell Protein Synthesis. Virology, 298(1), 1–7. https://doi.org/10.1006/viro.2002.1477

  35. Piña-Vázquez, C., De Nova-Ocampo, M., Guzmán-León, S. & Padilla-Noriega, L. (2007). Post-translational regulation of rotavirus protein NSP1 expression in mammalian cells. Arch. Virol., 152(2), 345–368. https://doi.org/10.1007/ s00705-006-0850-8

  36. Piron, M., Delaunay, T., Grosclaude, J. & Poncet, D. (1999). Identification of the RNA-binding, dimerization, and eIF4GIbinding domains of rotavirus nonstructural protein NSP3. J. Virol., 73(7), 5411–5421.

  37. Piron, M., Vende, P., Cohen, J. & Poncet, D. (1998). Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J., 17(19), 5811–5821. https://doi.org/10.1093/emboj/17.19.5811

  38. Poncet, D., Aponte, C. & Cohen, J. (1993). Rotavirus protein NSP3 (NS34) is bound to the 3’ end consensus sequence of viral mRNAs in infected cells. J. Virol., 67(6), 3159–3165.

  39. Poncet, D., Laurent, S. & Cohen, J. (1994). Four nucleotides are the minimal requirement for RNA recognition by rotavirus non-structural protein NSP3. EMBO J., 13(17), 4165–4173.

  40. Rubio, R.M., Mora, S.I., Romero, P., Arias, C.F. & López, S. (2013). Rotavirus prevents the expression of host responses by blocking the nucleo-cytoplasmic transport of polyadenylated mRNAs. J. Virol., 87(11), 6366–6345. https://doi.org/10.1128/ JVI.00361-13

  41. Silvestri, L.S., Taraporewala, Z.F. & Patton, J.T. (2004). Rotavirus Replication: Plus-Sense Templates for Double-Stranded RNA Synthesis Are Made in Viroplasms. J. Virol., 78(14), 7763– 7774. https://doi.org/10.1128/JVI.78.14.7763–7774.2004

  42. Tate, J.E., Burton, A.H., Boschi-Pinto, C. & Parashar, U.D. (2016). Global, Regional, and National Estimates of rotavirus Mortality in Children <5 Years of Age, 2000–2013. Clin. Infect. Dis., 62(Suppl. 2), S96–S105. https://doi.org/10.1093/cid/civ1013

  43. Taylor, J.A., O’Brien, J.A. & Yeager, M. (1996). The cytoplasmic tail of NSP4, the endoplasmic reticulum-localized non-structural glycoprotein of rotavirus, contains distinct virus binding and coiled coil domains. EMBO J., 15(17), 4469–4476.

  44. Vende, P., Piron, M., Castagné, N. & Poncet, D. (2000). Efficient Translation of rotavirus mRNA Requires Simultaneous Interaction of NSP3 with the Eukaryotic Translation Initiation Factor eIF4G and the mRNA 3 ′ End. J. Virol., 74(15), 7064– 7071. https://doi.org/10.1128/JVI.74.15.7064-7071.2000. Updated 44. Vicens, Q. & Westhof, E. (2014). Biogenesis of Circular RNAs. Cell, 159(1), 13–14. https://doi.org/10.1016/j.cell.2014.09.005

  45. Vitour, D., Lindenbaum, P., Vende, P., Becker, M., Poncet, D. & Becker, M.M. (2004). RoXaN, a Novel Cellular Protein Containing TPR, LD, and Zinc Finger Motifs, Forms a Ternary Complex with Eukaryotic Initiation Factor 4G and rotavirus NSP3 RoXaN, a Novel Cellular Protein Containing TPR, LD, and Zinc Finger Motifs, Forms a Ternary. J. Virol., 78(8), 3851–3862. https://doi.org/10.1128/JVI.78.8.3851

  46. Walsh, D., Mathews, M.B., Mohr, I., Larsson, O., Tian, B., Sonenberg, N., Hershey, J.W.B., Roux, P.P., Topisirovic, I., Darnell, J.C., Richter, J.D., Pavitt, G.D., Ron, D., Cells, V., Decker, C.J. & Parker, R. (2012). Tinkering with Translation: Protein Synthesis in Virus-Infected Cells. Cold Spring Harb. Perspect. Biol., 5(1), 1–28. https://doi.org/10.1101/cshperspect.a012351

  47. Walsh, D. & Mohr, I. (2011). Viral subversion of the host protein synthesis machinery. Nat. Rev. Microbiol., 9(12), 860–875. https://doi.org/10.1038/nrmicro2655

  48. Wells, S.E., Hillner, P.E., Vale, R.D. & Sachs, A.B. (1998). Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell, 2(1), 135–140.

  49. Woods, A.J., Kantidakis, T., Sabe, H., Critchley, D.R. & Norman, J.C. (2005). Interaction of Paxillin with Poly ( A ) -Binding Protein 1 and Its Role in Focal Adhesion Turnover and Cell Migration. Mol. Cell. Biol., 25(9), 3763–3773. https://doi. org/10.1128/MCB.25.9.3763




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2018;21