medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2019, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2019; 22 (1)

Microbialite-dominated fossil associations in Cipit Boulders from Alpe di Specie and Misurina (St. Cassian Formation, Middle to Upper Triassic, Dolomites, NE Italy)

Sánchez-Beristain F, Reitner J
Full text How to cite this article

Language: English
References: 94
Page: 1-18
PDF size: 1177.38 Kb.


Key words:

Microbialite associations, Microencrusters, Cluster analysis, olistoliths, St. Cassian-Formation – Triassic, Dolomites.

ABSTRACT

In this paper we describe four new fossil associations of “reef” and “reef”-like environments of the St. Cassian Formation (Ladinian-Carnian, Dolomites, NE Italy), based on thirty thin sections from 10 “Cipit boulders” olistoliths, which slided from the Cassian platform into coeval basin sediments. The fossil associations were determined by means of microfacies analysis using point-counting and visual estimation, as well as with aid of statistical methods, based on all fractions with a biotic significance (biomorpha and microbialites). Cluster Analyses in Q-Mode were performed, coupling three algorithms and two indices. In all samples, the main components of the framework are microbialite (average of 75%), and macrofossils (average of 20%), whereas cements and allochtonous components, such as allomicrite, do not represent a significant fraction.
Based on both microbialite and fossil content, Chaetetid–microencruster Association, Microbialite–microencruster Association, Dual-type Microbialite Association and Microbialite–Terebella Association, were differentiated. The palaeoenvironmental settings where the associations come from are separately discussed. Microencrusters helped determine energy and luminosity settings. Microencruster abundance and diversity, in addition to the conspicuousness of microbialite, indicate that all associations come either from a deep, or from a cryptic setting.


REFERENCES

  1. Astibia, H., López-Martínez, N., Elorza, J. & Vicens, E. (2012). Increasing size and abundance of microbialites (oncoids) in connection with the K/T boundary in non-marine environments in the South Central Pyrenees. Geologica Acta, 10 (3), 209–226. DOI: 10.1344/105.000001770

  2. Aurell, M. & Bádenas, B. (2004). Facies and depositional sequence evolution controlled by high-frequency sealevel changes in a shallow-water carbonate ramp. (late Kimmeridgian, NE Spain). Geological Magazine, 141 (6), 717–733. DOI: 10.1017/S0016756804009963 3. Bacelle, L. & Bosellini, A. (1965). Diagrammi per la stima visiva della composizione percentuale nelle rocce sedimentarie. Annali dell’Universitŕ di Ferrara, Sezione. IX, Scienze Geologiche e Paleontologiche, 1(3), 59–62.

  3. Bartley, J.K., Kah, L.C., Frank, T.D. & Lyons, T.W. (2015). Deepwater microbialites of the Mesoproterozoic Dismal Lakes Group: microbial growth, lithification, and implications for coniform stromatolites. Geobiology, 13, 15–32. DOI: 10.1111/gbi.12114

  4. Basilone, L. (2018). Lithostratigraphy of Sicily. Basel: Springer.

  5. Bizzarini, F. & Braga, G. (1978). Upper Triassic new genera and species of fair and questionable Bryozoa Chaetetida from the S. Cassiano Formation of the Dolomites (eastern Italy).

  6. Bolletino della Societŕ Paleontogica Italiana, 17(1), 28–48.

  7. Bosellini, A. (1991). Geologia delle Dolomiti. Bolzano: Casa Editrice Ahesia.

  8. Bosellini, A., Gianolla, P. & Stefani, M. (2003). Geology of the Dolomites. Episodes, 26 (3), 181–185.

  9. Brachert, T.C. (1999). Non-skeletal carbonate production and stromatolite growth within a Deep ocean basin (Last Glacial Maximum, Red Sea). Facies, 40, 211–228. DOI: 10.1007/BF02537475

  10. Bray, J.R. & Curtis, J.T. (1957). An ordination of upland forest communities of southern Wisconsin. Ecological Monographs, 27, 325–349. DOI: 10.2307/1942268

  11. Chan, O.W., Bugler-Lacap, D.C., Biddle, J.F., Lim, D.S., McKay, C.P. & Pointing, S.B. (2014). Phylogenetic diversity of a microbialite reef in a cold alkaline freshwater lake. Canadian Journal of Microbiology, 60 (6), 391–398. DOI: 10.1139/ cjm-2014-0024

  12. Delecat, S. & Reitner, J. (2005). Sponge communities from the Lower Liassic of Adnet (Northern Calcareous Alps, Austria). Facies, 51, 385–404. DOI: 10.1007/s10347- 005-0045-x

  13. Dickson, J.A.D. (1965). A modified staining technique for carbonates in thin section. Nature, 205, 587. DOI: 10.1038/205587a0

  14. Duda, J.-P., Van Kranendonk, M.J., Thiel, V., Ionescu, D., Strauss, H., Schäfer, N. & Reitner, J. (2016). A rare glimpse of Paleoarchean life: Geobiology of an exceptionally preserved microbial mat facies from the 3.4 GA Strelley Pool Formation, Western Australia. PLoS ONE. DOI:10.1371/ journal.pone.0147629

  15. Dupraz, C. & Strasser, A. (2002). Nutritional modes in coralmicrobialite reefs (Jurassic, Oxfordian, Switzerland): Evolution of trophic structure as a response to environmental change. Palaios,17 (5), 449–471. DOI: 10.1669/0883-1351

  16. Ezaki, Y., Liu, J., Nagano, T. & Adachi, N. (2008). Geobiological Aspects of the Earliest Triassic Microbialites Along the Southern Periphery of the Tropical Yangtze Platform: Initiation and Cessation of a Microbial Regime. Palaios, 23 (6), 356–369. DOI: 10.2110/palo.2007.p07-035r

  17. Fagerstrom, J.A. (1987). The evolution of reef communities. New York: John Wiley and Sons.

  18. Floquet, M., Neuweiler, F. & Léonide, P. (2012). The impact of depositional events and burial rate on carbonate-silica diagénesis in a Middle Jurassic stromatactis carbonate mud-mound, Sainte-Baume Massif, SE France. Journal of Sedimentary Research, 82 (7), 521–539. DOI: 10.2110/ jsr.2012.43

  19. Flügel, E. (2010). Microfacies of carbonate rocks. Analysis, interpretation, application. Berlin: Springer.

  20. Fürsich, F.T. & Wendt, J. (1977). Biostratinomy and Palaeoecology of the Cassian Formation (Triassic) of the Southern Alps. Palaeogeography, Palaeoclimatology, Palaeoecology, 22, 257–323. DOI: 10.1016/0031- 0182(77)90005-0

  21. George, A. D. (1999). Deep-water stromatolites, Canning Basin, northwestern Australia. Palaios, 14, 493–505. DOI: 10.2307/3515399

  22. Goldberg, W. M. (2013). The biology of reefs and reef organisms. Chicago: University of Chicago Press.

  23. Guido, A., Jiménez, C., Achilleos, K., Rosso, A., Sanfilippo, R., Hadjioannou, L., Petrou, A., Russo, F. & Mastandrea, A. (2017). Cryptic serpulid-microbialite bioconstructions in the Kakoskali submarine cave (Cyprus, Eastern Mediterranean). Facies, 63(21). DOI: 10.1007/s10347-017-0502-3

  24. Guido, A., Mastandrea, A., Rosso, A., Sanfilippo, R., Tosti, F., Riding, R. & Russo, F. (2014). Commensal simbiosis between agglutinated polychaetes and sulfate-reducing bacteria. Geobiology, 12, 265–275. DOI: 10.1111/ gbi.12084

  25. Hartman, W.D. & Goreau, T.F. (1970). Jamaican coralline sponges: their morphology, ecology and fossil relatives. Symposia of the Zoological Society of London, 25, 205–243.

  26. Heindel, K., Birgel, D., Brunner, B., Thiel, V., Westphal, H., Gischler, E., Ziegenbalg, J., Cabioch, G., Sjovall, P. & Peckmann, J. (2012). Post-glacial microbialite formation in coral reefs of the Pacific, Atlantic, and Indian Oceans. Chemical Geology, 304, 117–130. DOI: 10.1016/j. chemgeo.2012.02.009

  27. Jaccard, P. (1912). The distribution of the flora in the alpine zone. New Phytologist, 11, 37–50. DOI: 10.1111/j.1469- 8137.1912.tb05611.x

  28. Jackson, J.B.C., Goreau, T.F. & Hartman, W.D. (1971). Recent Brachiopod-Coralline Sponge Communities and Their Paleoecological Significance. Science, 13 (173), 623–625. DOI: 10.1126/science.173.3997.623

  29. James, N. P. & Jones, B. (2015). Origin of Carbonate Sedimentary Rocks. West Sussex: Wiley Works.

  30. Kershaw, S. (2017). Palaeogeographic variation in the Permian– Triassic boundary microbialites: A discussion of microbial and ocean processes after the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 274 (1-2), 1–17. DOI: 10.1016/j.jop.2016.12.002

  31. Kershaw, S., Crasquin, S., Li, Y., Collin, P.-Y., Forel, M.-B., Mu, W., Baud, A., Wang, Y., Maurer, F. & Guo, L. (2012). Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis. Geobiology, 10, 25–47. DOI: 10.1111/j.1472-4669.2011.00302.x

  32. Keupp, H. & Arp, G. (1990). Aphotische Stromatolithe aus dem süddeutschen Jura (Lias, Dogger). Berliner geowissenschaftliche Abhandlungen A, 124, 3–33.

  33. Keupp, H., Reitner, J. & Salomon, D. (1989). Kieselschwämme (Hexactinellida und „Lithistida“) aus den Cipit-Kalken der Cassianer Schichten (Karn, Südtirol). Berliner geowissenschaftliche Abhandlungen A, 106, 221–241.

  34. Legendre, P. & Legendre. L. (2012). Numerical ecology. Amsterdam: Elsevier Science BV.

  35. McCune, B., Grace, J.B. & Urban, D.L. (2002). Analysis of Ecological Communities. Gleneden Beach: MjM Software Design.

  36. Mietto, P., Manfrin, S., Preto, N., Rigo, M., Roghi, G., Furin, S., Gianolla, P., Posenato, R., Muttoni, G., Nicora, A., Buratti, N., Cirilli, S., Spötl, C., Ramezani, J. & Bowring, S.A. (2012). The Global Boundary Stratotype Section and Point (GSSP) of the Carnian Stage (Late Triassic) at Prati di Stuores/ Stuores Wiesen Section (Southern Alps. NE Italy). Episodes, 35 (3), 414–430.

  37. Müller-Wille, S. & Reitner, J. (1993). Palaeobiological Reconstructions of selected sphinctozoan sponges from the Cassian Beds (Lower Carnian) of the Dolomites (Northern Italy). Berliner geowissenschaftliche Abhandlungen Reihe E, 9, 253–281. DOI: 10.23689/fidgeo-771

  38. Münster, G. (1841). Beschreibung und Abbildung der in den Kalkmergelschichten von St. Cassian gefundenen Versteinerungen. In Wissmann, H.L. & Münster, G.G. (Eds.). Beiträge zur Geognosie und Petrefakten-Kunde des Südöstlichen Tirols vorzüglich der Schichten von St. Cassian (pp. 25–152). Bayreuth: 4. Buchner.

  39. Neuweiler, F. (1993). Development of Albian microbialites and microbialite reefs at marginal platform areas of the Vasco-Cantabrian Basin (Soba Reef Area, Cantabria, N. Spain). Facies, 29, 231–250. DOI: 10.1007/BF02536930

  40. Neuweiler, F. & Bernoulli, D. (2005). Mesozoic (Lower Jurassic) red stromatactis limestones from the Southern Alps (Arzo, Switzerland): calcite mineral authigenesis and syneresistype deformation. International Journal of Earth Sciences, 94(1), 130–146. DOI: 10.1007/s00531-004-0442-3

  41. Neuweiler, F. & Reitner, J. (1995). Epifluorescence-microscopy of selected automicrites from Lower Carnian Cipit-boulders of the Cassian Formation (Seeland Alpe, Dolomites). Facies, 32, 26–28. DOI: 10.1007/BF02536864

  42. Nicol, S. A. (1987). A down-slope Upper Triassic Reef Mound: Aflenz Limestone, Hochschwab Mountains, Northern Calcareous Alps. Facies, 16, 23–36. DOI: 10.1007/ BF02536747

  43. Nose, M., Schmid, D.U. & Leinfelder, R.R. (2006). Significance of microbialites, calcimicrobes, and calcareous algae in reefal framework formation from the Silurian of Gotland, Sweden: Sedimentary Geology, 192 (3/4), 243–265. DOI: 10.1016/j.sedgeo.2006.04.009

  44. Nützel, A., Joachimski, M. & López-Correa, M. (2010). Pronounced seasonal climatic fluctuations in the Late Triassic tropics - high-resolution oxygen isotope records from aragonitic bivalve shells (Cassian Formation, Northern Italy). Palaeogeography Palaeoclimatology Palaeoecology, 285, 194–204. DOI: 10.1016/j.palaeo.2009.11.011

  45. Olivier, N., Carpentier, C., Martin-Garin, B., Lathulliere, B., Gaillard, C., Ferry, S., Hantzpergue, P. & Geister, J. (2004). Coral-microbialite reefs in pure carbonate vesus mixed carbonate-siliciclastic depositional environments: the example of the Pagny-sur-Meuse section (Upper Jurassic, northeastern France). Sedimentary Geology, 205 (1-2), 14–33. DOI: 10.1007/s10347-004-0018-5

  46. Olivier, N., Hantzpergue, P., Gaillard, C., Pittet, B., Leinfelder, R. R., Schmid, D. U. & Werner, W. (2003). Microbialite morphology, structure and growth: a modelo f the Upper Jurassic reefs of the Chay Peninsula (Western France). Palaeogeography, Palaeoclimatology, Palaeoecology, 193 (3-4), 383–404. DOI: 10.1016/S0031-0182(03)00236-0

  47. Páez, M., Zuniga, O., Valdés, O. J. & Ortlieb, J. (2001). Foraminíferos bentónicos recientes en sedimentos micróxicos de la bahía Mejillones del Sur (23°S), Chile. Revista de Biología Marina y Oceanografía, 36(2), 129– 139. DOI: 10.4067/S0718-19572001000200002

  48. Peybernes, C., Chablais, J. & Martini, R. (2015). Upper Triassic (Ladinian?–Carnian) reef biota from the Sambosan Accretionary Complex, Shikoku, Japan. Facies, 61(20). DOI: 10.1007/s10347-015-0446 -4

  49. Pratt, B.R. (1995). The origin, biota and evolution of deepwater mud mounds. In Monty, C.L.V., Bosence, D.W.J., Bridges, P.D. & Pratt, B.R. (Eds.). Carbonate mud-mounds: their origin and evolution. International Association of Sedimentologists, Special Publication, 23, 49–123. DOI: 10.1002/9781444304114.ch3

  50. Rech, H. (1998). Geobiologie der sogenannten “Cipit-Kalke” der Beckenfazies der Cassianer-Schichten, St. Kassian, Dolomiten. Diplom Thesis, Universität Göttingen. 136 pp.

  51. Reijmer, J. J. G. & Everaars, J. S. L. (1991). Carbonate platform facies reflected in carbonate basin facies (Triassic, Northern Calcareous Alps, Austria). Facies, 25, 253–278. DOI: 10.1007/BF02536761

  52. Reitner, J. (1993). Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia). Formation and concepts. Facies, 29, 3–40. DOI: 10.1007/ BF02536915

  53. Reitner, J. & Neuweiler, F. (1995). Mud Mounds: A polygenetic spectrum of fine-grained carbonate buildups. Facies, 32, 1–70. DOI: 10.1007/BF02536864

  54. Reitner, J., Wilmsen, M. & Neuweiler, F. (1995). Cenomanian/ Turonian sponge microbialite deep-water hardground community (Liencres, Northern Spain). Facies, 32, 203–212. DOI: 10.1007/BF02536869

  55. Riding, R. (1975). Girvanella and other algae as depth indicators. Lethaia, 8, 173–179. DOI: 10.1111/j.1502-3931.1975. tb01310.x

  56. Rodríguez-Martínez, M., Reitner, J. & Mas, R. (2010). Microframework reconstruction from peloidal-dominated mud mounds (Viséan, SW Spain). Facies, 56 (1), 139–156. DOI: 10.1007/s10347-009-0201-9 Round, F. E. (1981). The Ecology of Algae. Cambridge: Cambridge University Press.

  57. Russo, F. (2005). Biofacies evolution in the Triassic platforms of the Dolomites, Italy. Annali dell’Universitŕ degli Studi di Ferrara Museologia Scientifica e Naturalistica, Volume Speciale 2005, 33–45. DOI: 10.15160/1824-2707/353

  58. Russo, F., Neri, C., Mastandrea, A. & Baracca, A. (1997). The Mud Mound Nature of the Cassian Platform Margins of the Dolomites. A Case History: the Cipit Boulders from Punta Grohmann (Sasso Piatto Massif, Northern Italy): Facies, 36, 25–36. DOI: 10.1007/BF02536875

  59. Russo, F., Neri, C., Mastandrea, A. & Laghi, G. (1991). Depositional and diagenetic history of the Alpe di Specie (Seelandalpe) fauna (Carnian, Northeastern Dolomites). Facies, 25, 187–210. DOI: 10.1007/BF02536759

  60. Saint-Martin, J.-P., Müller, P., Moissette, P. & Dulai, A. (2000). Coral microbialite environmnet in a Middle Miocene reef of Hungary. Palaeogeography, Palaeoclimatology, Palaeoecology, 160 (3-4), 179–191. DOI: 10.1016/S0031- 0182(00)00065-1

  61. Sánchez-Beristain, F. & Reitner, J. (2012). Palaeoecology of microencrusters and encrusting “coralline” sponges in Cipit boulders from the Cassian Formation (upper Ladinian-lower Carnian, Dolomites, Northern Italy). Paläontologische Zeitschrift, 86(2), 113–133. DOI: 10.1007/s12542-011- 0124-y

  62. Sánchez-Beristain, F. & Reitner, J. (2016). Palaeoecology of new fossil associations from the Cipit boulders, St. Cassian Formation (Ladinian–Carnian, Middle–Upper Triassic; Dolomites, NE Italy). Paläontologische Zeitschrift, 90 (2), 243–269. DOI: 10.1007/s12542- 016-0305-9

  63. Sánchez-Beristain, F. & Reitner, J. (2018). Four new fossil associations identified in the Cipit boulders from the St. Cassian Formation (Ladinian–Carnian; Dolomites, NE Italy). Paläontologische Zeitschrift, 92 (3), 535–556. DOI: 10.1007/s12542-017-0391-3.

  64. Sánchez-Beristain, F., López-Esquivel Kranksith, L., García- Barrera, P. & Reitner, J. (2013). El primer registro de Koskinobullina socialis (Foraminífera) para el Triásico de Europa y sus implicaciones paleoecológicas. Boletín Geológico y Minero, 124, 437–450.

  65. Sánchez-Beristain, F., Schäfer, N., Simon, K. & Reitner, J. (2011). New geochemical method to characterise microbialites from the St. Cassian Formation, Dolomites, Northeastern Italy. In: Reitner, J., Quéric, N.V. & Arp, G. (Eds.). Advances in stromatolite geobiology, Lecture Notes in Earth Sciences, 131, 411–427. DOI: 10.1007/978-3- 642-10415-2_26

  66. Schäfer, P. (1979). Fazielle Entwicklung und palökologische Zonierung zweier obertriadischer Riffstrukturen in den Nördlichen Kalkalpen („Oberrhät“-Riff-Kalke, Salzburg). Facies, 1: 3–245. DOI: 10.1007/BF02536461

  67. Schmid, D. U. (1996). Marine Mikrobialithe und Mikroinkrustierer aus dem Oberjura. Profil, 9, 1–251.

  68. Senowbari-Daryan, B. (1980). Fazielle und palöontologische Untersuchungen in oberrhätischen Riffen (Feichtensteinund Gruberriff bei Hintersee, Salzburg, Nördliche Kalkalpen): Facies, 3, 1–237. DOI: 10.1007/BF02536456

  69. Senowbari-Daryan, B., Schäfer, P. & Abate, B. (1983). Obertriadische Riffe und Rifforganismen in Sizilien (Beiträge zur Paläontologie und Mikrofazies obertriadischer Riffe im alpin-mediterranen Raum, 27). Facies, 6, 165–184. DOI: 10.1007/BF02536684

  70. Sepkoski, J. J. Jr. (1974). Quantified coefficients of association and measurement of similarity. Journal of the International Association for Mathematical Geology, 6 (2), 135–152. DOI: 10.1007/BF02080152

  71. Shapiro, R. (2004). Neoproterozoic-Cambrian microbialite record. The Paleontological Society Papers, 10, Neoproterozoic-Cambrian Biological Revolutions, 5–16. DOI: 10.1017/S1089332600002308

  72. Shen, J.-W. & Qing, H. (2008). Calcimicrobes, microbial fabrics, and algae in Mississippian Midale Beds, Midale and Glen Ewen pools, Williston Basin, Southeastern Saskatchewan. Saskatchewan Geological Survey Summary of Investigations, 1, 1–10.

  73. Simpson, G.L. (2007). Analogue Methods in Palaeoecology: Using the analogue Package. Journal of Statistical Software, 22 (2), 1–29. DOI: 10.18637/jss.v022.i02

  74. Sokal, R. & Michener, C. (1958). A statistical method for evaluating systematic relationship. University of Kansas Science Bulletin, 38, 1409–1438.

  75. Spadafora, A., Perri, E., McKenzie, J. & Vasconcelos, C. (2010). Microbial biomineralization processes forming modern Ca:Mg carbonate stromatolites. Sedimentology, 57, 27–40. DOI: 10.1111/j.1365-3091.2009.01083.x

  76. Stanley, G.D. Jr. & Swart, P. (1995). Evolution of the coralzooxanthellate symbiosis during the Triassic: A geochemical approach. Paleobiology, 21, 179–199. DOI: 10.1017/ S0094837300013191

  77. Stanton, R.J. & Flügel, E. (1987). Paleoecology of Upper Triassic reefs in the Northern Calcareous Alps: reef communities. Facies, 16 (1), 175–185. DOI: 10.1007/BF02536751

  78. Tosti, F., Mastandrea, A., Guido, A., Demasi, F., Russo, F. & Riding, R. (2014). Biogeochemical and redox record of Mid–Late Triassic reef evolution in the Italian Dolomites. Palaeogeography, Palaeoclimatology, Palaeoecology, 399, 52–66. DOI: 10.1016/j.palaeo.2014.01.029

  79. Tunis, G., Pugliese, N., Jurkovšek, B., Ogorelec, B., Drobne, K., Riccamboni, R. & Tewari, V.C. (2011). Microbialites as Markers of Biotic and Abiotic Events in the Karst District, Slovenia and Italy. In Tewari, V. & Seckbach, J. (Eds.). STROMATOLITES: Interaction of Microbes with Sediments: Cellular Origin, Life in Extreme Habitats and Astrobiology, 18, (pp. 251–272) Dordrecht: Springer. DOI: 10.1007/978-94-007-0397-1_11

  80. Turner, E.C., Narbonne, G.M. & James, N.P. (2000). Framework composition of early Neoproterozoic calcimicrobial reefs and associated microbialites, MacKenzie Mountains, N.W.T., Canada. In Grotzinger, J. P. & James, N.P. (Eds.). Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. SEPM (Society for Sedimentary Geology), Special Publication, 67, 179–205.

  81. Von Hauer, F. (1858). Erläuterungen zu einer geologischen Übersichtskarte der Schictgebirge der Lombardei. Jahrbuch der Kaiserlich-Königlichen Geologischen Reichsanstalt, 9, 445–496.

  82. Wahlman, G.P., Orchard, D.M. & Buijs, D.M. (2013). Calcisponge-microbialite reef facies, middle Permian (lower Guadalupian), northwest shelf margin of Permian Basin, New Mexico: American Association of Petroleum Geologists Bulletin, 97, 1895–1919. DOI: 10.1306/07091313020

  83. Webb, G. & Jell, J.S. (1997). Cryptic microbialite in subtidal reef framework and intertidal solution cavities in beachrock, Heron Reef, Great Barrier Reef, Australia: Preliminary observations. In Neuweiler, F., Reitner, J. & Monty, C. (Eds.). Biosedimentology of microbial buildups, IGCP Project No. 380, Proceedings of 2nd Meeting Göttingen/ Germany 1996, Facies, 36, 219–223. DOI: 10.1007/ BF02536885

  84. Webb, G. & Kamber, B.S. (2000). Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochimica et Cosmochimica Acta, 64 (9), 1557– 1565. DOI: 10.1016/S0016-7037(99)00400-7

  85. Wendt, J. (1982). The Cassian Patch Reefs (Lower Carnian, Southern Alps). Facies, 6, 185–202. DOI: 10.1007/ BF02536685

  86. Wendt, J. & Fürsich, F.T. (1980). Facies analysis and paleogeography of the Cassian Formation, Triassic, Southern Alps. Rivista Italiana di Paleontologia e Stratigrafia, 85 (3/4), 1003–1028.

  87. Wendt, J., Xichun, W., & Reinhardt, J.W. (1989). Deepwater hexactinellid sponge mounds from the Upper Triassic of northern Sichuan (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 76, 17–29. DOI: 10.1016/0031-0182(89)90100-4

  88. Westphal, H., Heindel, K., Brandano, M. & Peckmann, J. (2010). Genesis of microbialites as contemporaneous framework components of deglacial coral reefs, Tahiti (IODP 310). Facies, 56 (3), 337–352. DOI: 10.1007/ s10347-009-0207-3

  89. Wilkin, R. T. & Barnes, H. L. (1997). Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61 (2), 323–339. DOI: 10.1016/S0016-7037(96)00320-1

  90. Wood, R. A. (1999). Reef evolution. Oxford: Oxford University Press.

  91. Wood, R. (2001). Are reefs and mud mounds really so different? Sedimentary Geology, 145 (3-4), 161–171. DOI: 10.1016/ S0037-0738(01)00146-4

  92. Wulff, J. L. (2006). Resistance vs recovery: morphological strategies of coral reef sponges. Functional Ecology, 20 (4), 699–708. DOI: 10.1111/j.1365-2435.2006.01143.x

  93. Zamagni, J., Košir, A. & Mutti, M. (2009). The first microbialite - coral mounds in the Cenozoic (Uppermost Paleocene) from the Northern Tethys (Slovenia): Environmentally-triggered phase shifts preceding the PETM? Palaeogeography, Palaeoclimatology, Palaeoecology, 274 (1-2), 1–17. DOI: 10.1016/j.palaeo.2008.12.007

  94. Zhuravlev A. Yu. (1996). Reef ecosystem recovery after the Early Cambrian extinction. In Hart M. B. (Ed.). Biotic recovery from mass extinction events: Geological Society of London Special Publication, 102, 79–96. DOI: 10.1144/ GSL.SP.1996.001.01.06




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2019;22