medigraphic.com
SPANISH

Revista Biomédica

Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2019, Number 3

<< Back Next >>

Rev Biomed 2019; 30 (3)

Evaluación de la citotoxicidad de nanogeles de polivinilpirrolidona (PVP) en fibroblastos murinos

García-Rodríguez LM, Díaz-Jiménez D, Perez-Guevara OL, Ges-Naranjo A, Rapado-Paneque M, Ojalvo-Garcia A, Verhe-Tamayo M, Martínez-Plous Y, Garcia-Hernandez L, Rivera-Tapia JA
Full text How to cite this article

Language: Spanish
References: 18
Page: 131-136
PDF size: 594.62 Kb.


Key words:

cytotoxicity, nanogels, neutral red, fibroblasts.

ABSTRACT

Introduction.Nanogels are extensively studied for diverse biomedical applications. One of the relevant is the use as drugs nano-carriers for therapeutic purposes increasing the bioactivity and transport of active components to specific sites or cells.
Objective.The aim of this study was to evaluate the cytotoxicity of 30 nm and 90 nm PVP nanogels in murine fibroblast cells.
Methods. Cytotoxicity was evaluated through lysosomal integrity by neutral red uptake assay in murine fibroblast cell line L-929.
Results. Cytotoxicity results by neutral red uptake assay showed that there are no cytotoxic effects in cells treated with the 30 nm nanogels, at the concentrations of 50, 100, 200 and 300 µg / mL for 24 h and 48 h. However, 90 nm nanogels at 48 h presented certain cytotoxicity when the percent survival was less than 70; this effect was not observed at 24 h.
Conclusion. PVP nanogels were obtained by gamma radiation with an average size of 30 nm and 90 nm approximately. The absence of cytotoxicity of 30 nm PVP nanogels on the L-929 cell line makes them potential candidates for biomedical applications.


REFERENCES

  1. Hervella P, Lozano V, García-Fuentes M, Alonso MJ. Nanomedicine: New challenges and opportunities in cancer therapy. J Biomed Nanotechnol. 2008 Sep; 4(3): 276-292. DOI: https://doi.org/10.1166/jbn.2008.339

  2. Hasirci, N. Micro and nano systems in biomedicine in drug delivery. In: Mozafari MR. Nanomaterials and nanosystems for biomedical applications. Dordrecht: Springer; 2007. P. 1-26. https://www.springer.com/la/ book/9781402062889

  3. Rosiak JM. Nano-and microgels of poly (vinyl methyl ether) obtained by radiation techniques. In: Emerging applications of radiation in nanotechnology proceeding of a consultants meeting held in Bologna, Italy, 22-25 March 2004. P. 141-156. https://www-pub.iaea.org/ MTCD/Publications/PDF/te_1438_web.pdf

  4. Escalona RO, Quintanar GD. Nanogeles poliméricos: una alternativa para la adminnistración de fármacos. Rev Mex Cienc Farm. 2014 Jul-Sep; 45(3): 17-38. www. scielo.org.mx/pdf/rmcf/v45n3/v45n3a3.pdf

  5. Zarekar NS, Lingayat VJ, Pande VV. Nanogel as a novel platform for smart drug delivery system. Nanosci Nanotechnol Res. 2017 Mar; 4(1): 25-31. DOI: 10.12691/ nnr-4-1-4

  6. Sultana F, Manirujjaman IUH, Arafat M, Sharmin S. An overview of nanogel drug delivery system. J Appl Pharm Sci 2013 Sep; 3(8 Suppl 1): S95–S105. DOI: 10.7324/ JAPS.2013.38.S15

  7. Ges NAA, Viltres CH, Fonseca RD, Rapado PM, Aguilera CY. Radiation-induced synthesis of polyvinylpyrrolidone (PVP) nanogels. J Phys Sci Appl. 2016 Sep-Oct; 6(5): 21-26. DOI: 10.17265/2159-5348/2016.05.004

  8. Pecora R. Dynamic light scattering measurement of nanometer particles in liquids. J Nanopart Res 2000 Feb; 2: 123-131.https://link.springer.com/content/ pdf/10.1023%2FA%3A109067107182.pdf

  9. Repetto G, Del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 2008 Jul; 3(7): 1125-1131. DOI:10.1038/ nprot.2008.75

  10. O´ Hare S, Atterwill CK. Methods in molecular biology in vitro toxicity testing protocols. New Jersey USA: Humana Press Inc. Totowa. 1995. P. 332. http://link. springer.com/content/pdf/10.1385%2F0896032825.pdf

  11. Mullick CS, Lalwani G, Zhang K, Yang JY, Neville K, Sitharaman B. Cell specific cytotoxicity and uptake of graphene nanoribbons. Biomaterials. 2013 Oct; 34(1): 283-293. DOI: 10.1016/j.biomaterials.2012.09.057

  12. Batalla MJ, Cuadros MA, San Martín-Martínez E. Potencial zeta en la determinación de carga superficial de liposomas. Lat Am J Phys Educ. 2014 Dec; 8(4): 4319-14319-6.https://dialnet.unirioja.es/servlet/ articulo?codigo=5196753

  13. Borenfreund E, Puerner JA. Toxicity determination in vitro by morphological alterations and neutral red absorption. Toxicol Lett. 1985 Feb-Mar; 24(2): 119-124. https://doi.org/10.1016/0378-4274(85)90046-3

  14. Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006 Apr; 6(4): 662– 668. DOI: 10.1021/nl052396o

  15. Chithrani BD, Chan WC. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007 Jun; 7(6): 1542-1550. DOI: 10.1021/nl070363y

  16. Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA. 2008 Aug; 105(33): 11613-11618. https://doi. org/10.1073/pnas.0801763105

  17. Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Sizedependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem J. 2004 Jan; 377(1): 159-169. DOI: 10.1042/bj20031253

  18. Zhu, X., P. Lu, W. Chen y J. Dong. Studies of UV crosslinked poly (Nvinylpyrrolidone) hydrogels by FTIR, Raman and solid-state NMR spectroscopies. Polymer. 2010 Jun; 51(14): 3054-3063. DOI: 10.1016/j. polymer.2010.05.006




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Biomed. 2019;30