medigraphic.com
SPANISH

Archivos de Neurociencias

Instituto Nacional de Neurología y Neurocirugía
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2019, Number 3

<< Back Next >>

Arch Neurocien 2019; 24 (3)

Neural prostheses and amputation

Lamas-Figueira S, González-González Y, Da Cuña-Carrera I
Full text How to cite this article

Language: Spanish
References: 23
Page: 25-36
PDF size: 410.75 Kb.


Key words:

amputation, neural prostheses, upper extremity, lower extremity.

ABSTRACT

Summary: Most of patients amputated are carrier of a prosthesis, what allows to the user follow realizing part or the whole of his daily activities. We can define the prostheses like an artificial element endowed of some able autonomy to realize the function that would realize the part amputated of the body. Inside the prostheses, the neural prostheses are a system of transduction bidirectional between the organism and the proper prosthesis, which commission to register the biological signals of the body through electrodes. Will carry out a bibliographic review with the aim to know the scientific evidence current about the possible use of the prostheses neurales in amputados.
Methods: It was made a revision of the scientific literature between December of 2018 and January of 2019 in the data bases Medline, Cinahl, Web of Science, Pubmed and Scopus and the searched with the terms: “amputation”, “neural prostheses”, “upper extremity” and “lower extremity” and broadened the research whit “upper limb” and “lower limb”. It showed up a total of 15 valid results after applying the criteria of inclusion and exclusion
Results: The articles dissected used different types of prosthetic controllers, as they are the electrodes surgically implants, the prosthesis myoelectric the neural interfaces (agonistantagonist), the measurement units inertial or the EMSSA system. Observed that the use of these neural prostheses allowed main functionality to the users of the same, like this like improvements to the hour to realize the movements.
Conclusion: Can conclude that the neural prostheses in amputees have a scientific evidence checked in the actuality, being able to contribute big profits to his daily life. However, due to the fact that you treat of technological elements that in the actuality find in roads of development, is not possible to take advantage of to the maximum his performance. Therefore, his optimization would go tied to a main scientific development and technological


REFERENCES

  1. Farro L, Tapia R, Bautista L, Montalvo R, Iriarte H. Características clínicas y demográficas del paciente amputado. Rev Med Her 2012; 23(4):240. http://www.scielo.org.pe/pdf/rmh/v23n4/v23n4ao4.pdf

  2. Esteve MC, Fernández M. Revisión de las complicaciones crónicas de la diabetes mellitus en España. 2007;5.

  3. González JMD. Robótica y prótesis inteligentes. RDU 2005; 6(1):15.

  4. Sermas, Mad. Fisioterapuetas del servicio madrileño de salud. Madrid: ADAMS; 2012; 1ed.2 (26): 1-58.

  5. Quiroz FG, Moreno AV, Jaramillo PC. Interfaces neuronales y sistemas máquina-cerebro: fundamentos y aplicaciones. Revisión. EIA. 2007;1:14-22. http://www.scielo.org.co/pdf/rinbi/v1n1/v1n1a04.pdf

  6. Kuiken TA, Barlow AK, Hargrove LJ, Dumanian GA. Targeted muscle reinnervation for the upper and lower extremity: Tech Orthop 2017; 32(2):109-16. doi: 10.1097/BTO.0000000000000194

  7. Bergmeister KD, Vujaklija I, Muceli S, Sturma A, Hruby LA, Prahm C, et al. Broadband Prosthetic Interfaces: Combining Nerve Transfers and Implantable Multichannel EMG Technology to Decode Spinal Motor Neuron Activity. Front Neurosci 2017;11. doi: 10.3389/fnins.2017.00421

  8. Clites TR, Carty MJ, Ullauri JB, Carney ME, Mooney LM, Duval JF, et al. Proprioception from a neurally controlled lower-extremity prosthesis. Sci Transl Med 2018; 10(443):eaap8373. doi:10.1126/scitranslmed.aap8373

  9. Dietrich C, Nehrdich S, Seifert S, et al. Leg prosthesis with somatosensory feedback reduces phantom limb pain and Increases functionality. Front Neurosci 2018; 9. doi: 10.3389/fneur.2018.00270

  10. Charkhkar H, Shell CE, Marasco PD, et al. High-density peripheral nerve cuffs restore natural sensation to individuals with lower-limb amputations. J Neural Eng 2018;15(5):056002. doi: 10.1088/1741-2552/aac964

  11. Christie BP, Freeberg M, Memberg WD, Pinault GJC, Hoyen HA, Tyler DJ, et al. Long-term stability of stimulating spiral nerve cuff electrodes on human peripheral nerves. J Neural Eng 2017;14(1). doi: 10.1186/s12984-017-0285-3

  12. Parri A, Martini E, Geeroms J, Flynn L, Pasquini G, Crea S, et al. Whole body awareness for controlling a robotic transfemoral prosthesis. Frontiers in Neurorobotics. 2017; 11. doi: 10.3389/fnbot.2017.00025

  13. Mehryar P, Shourijeh MS, Rezaeian T, Iqbal N, et al. Changes in synergy of transtibial amputee during gait: a pilot study. IEEE EMBS Inter Conf biomed health info (BHI) 2017; 325-8. DOI: 10.1109/BHI.2017.7897271

  14. Mai A, Commuri S. Intelligent control of a prosthetic ankle joint using gait recognition. Con Engineer Prac 2016;49:1-13.

  15. Pagel A, Arieta AH, Riener R, Vallery H. Effects of sensory augmentation on postural control and gait symmetry of transfemoral amputees: a case description. Med Biol Eng Comput 2016;54(10):1579-89. doi: 10.1007/ s11517-015-1432-2

  16. Li C, Ren J, Huang H, Wang B, Zhu Y, Hu H. PCA and deep learning based myoelectric grasping control of a prosthetic hand. BMC. 2018;17(1).

  17. Blana D, Kyriacou T, Lambrecht JM, Chadwick EK. Feasibility of using combined EMG and kinematic signals for prosthesis control: A simulation study using a virtual reality environment. J Electro Kinesiol 2016;29:21-7.

  18. Davis TS, Wark HAC, Hutchinson DT, Warren DJ, O’Neill K, Scheinblum T, et al. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J Neural Eng. 2016;13(3):036001.

  19. Engdahl SM, Christie BP, Kelly B, Davis A, Chestek CA, Gates DH. Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques. J Neuroeng Rehabil 2015 doi: 10.1186/s12984-015-0044-2

  20. Schiefer M, Tan D, Sidek SM, Tyler DJ. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J Neural Eng. 2016;13(1):016001.

  21. Urra-Medina E, Núñez-Carrasco R, Retamal-Valenzuela C, Jure-Cares L. Enfoques de estudio de casos en la investigación de enfermería. Ciencia y enfermería. 2014;20(1):131-42.

  22. Orkaizagirre Gómara A, Amezcua M, Huércanos Esparza I, Arroyo Rodríguez A. El Estudio de casos, un instrumento de aprendizaje en la Relación de Cuidado. Index de Enfermería. 2014;23(4):244-9.

  23. Valencia MMA, Mora CVG. El rigor científico en la investigación cualitativa. 2011;29(3):15.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Arch Neurocien. 2019;24