medigraphic.com
SPANISH

Revista Cubana de Información en Ciencias de la Salud (ACIMED)

ISSN 2307-2113 (Electronic)
Revista Cubana de Información en Ciencias de la Salud (ACIMED)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2019, Number 3

<< Back Next >>

Revista Cubana de Información en Ciencias de la Salud (ACIMED) 2019; 30 (3)

Principal component analysis to obtain reduced indicators of measurement in information search

Quindemil TEM, Rumbaut LF
Full text How to cite this article

Language: Spanish
References: 14
Page: 1-17
PDF size: 361.15 Kb.


Key words:

information search competence, health sciences, principal component analysis, multivariant technique.

ABSTRACT

The purpose of the research was to verify the applicability of principal component analysis to measure information search competence. A correlational-descriptive quantitative study was conducted based on the eight indicators of information search competence contained in the IL-HUMASS questionnaire, all of which were included in a survey applied to 300 students attending the first four academic levels of Health Sciences majors at the Technical University of Manabí. Data processing with the statistical software SPSS yielded three principal components: the first one comprised four indicators related to advanced search in databases using terms from the specialty, the second grouped two indicators concerning the use of automated catalogs and printed sources of information, and the third included two indicators regarding electronic sources of information (primary and informal). Eventual ANOVA testing of these components revealed statistically significant differences in each component for the various majors. Post-hoc analysis with the least significant difference method facilitated identification of the statistically different groups in each component. Conclusions point to the feasibility of using this multivariant technique to conduct similar studies with many variables and a large number of samples.


REFERENCES

  1. Pinto M, Doucet AV, Fernández-Ramos A. The role of information competencies andskills in learning to abstract. JIS. 2008 [acceso: 11/06/2019];34(6):799-815. Disponible en: https://doi:10.1177/0165551507088308

  2. ACRL (Association of College Research Libraries). Information Literacy CompetencyStandards for Higher Education. ACRL; 2000 [acceso: 11/06/2019]. Disponible en: https://alair.ala.org/bitstream/handle/11213/7668/ACRL%20Information%20Literacy%20Competency%20Standards%20for%20Higher%20Education.pdf?sequence=1&isAllowed=y

  3. Association of College and Research Libraries. Framework for Information Literacy forHigher Education. ACRL; 2016 [acceso: 13/06/2019]. Disponible en: http://www.ala.org/acrl/sites/ala.org.acrl/files/content/issues/infolit/Framework_ILHE.pdf

  4. Pinto M. Design of the IL-HUMASS survey on information literacy in higher education:A self-assessment approach. JIS. 2010;36(1):86-103.

  5. Lópes C, Pinto M. IL-HUMASS – Instrumento de Avaliação de Competências emLiteracia da Informação: um Estudo de Adaptação à População Portuguesa. Actas Politicas de Informação na Sociedade em rede; 2011 [acceso: 11/06/2019]. Disponible en: https://www.bad.pt/publicacoes/index.php/congressosbad/article/viewFile/181/177

  6. Council of Australian University Librarians. Information Literacy Standards CAUL.Camberra: CAUL; 2001 [acceso: 11/06/2019]. Disponible en: https://archive.caul.edu.au/caul-doc/InfoLitStandards2001.doc

  7. Society of College, National and University Libraries. Information Skills in HigherEducation: A SCONUL Position Paper. SCONUL; 1999 [acceso: 15/06/2019]. Disponible en: https://www.sconul.ac.uk/sites/default/files/documents/Seven_pillars2.pdfde

  8. Sánchez M. Diagnóstico de las competencias informacionales en Ciencias de laInformación desde la percepción del estudiante de la Universidad de la Habana. Invest Bibliotecol. 2015;29(67):201-18.

  9. Hernández-Ramos JP, Martínez-Abad F, Olmos-Migueláñez S, Rodríguez-Conde MJ.Evaluación de competencias informacionales con el instrumento IL-HUMASS: Escalamiento Multidimensional. RIDEP. 2016;42(2):39-48.

  10. Fonseca RS, Escola J, Loureiro A, Carvalho A. Competências de Estudo dos EstudantesUniversitários: Estudo comparativo entre uma universidade portuguesa e brasileira. RASE. 2017;10(2):167-77.

  11. Tarango J, Hernández-Gutiérrez PZ, Vázquez-Guzmán D. Evaluación de la produccióncientífica en universidades públicas estatales mexicanas (2007-2011) usando análisis de componentes principales. Profes Inform. 2015;24(5):567-76.

  12. Ávila RB. Metodología de la Investigación. Guía para elaborar la tesis. Lima, Perú:Estudio y Ediciones; 2001.

  13. Fuente S. Componentes Principales. Madrid: Universidad Autónoma de Madrid; 2011.

  14. Terrádez-Gurrea M. Análisis de componentes principales. Barcelona: Universitat Obertade Catalunya (UOC); 2012 [acceso: 15/06/2019]. Disponible en: https://docplayer.es/storage/19/278064/278064.pdf




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Revista Cubana de Información en Ciencias de la Salud (ACIMED). 2019;30