medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2019, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2019; 22 (1)

Trends in bioenergy: from the metagenoma of habitats rich in sulfur to the purification of biogas

Veana F, González-Purata PY, Wong-Paz JE, Aguilar-Zárate P, Muñiz-Márquez DB
Full text How to cite this article

Language: Spanish
References: 66
Page: 1-11
PDF size: 539.60 Kb.


Key words:

agroindustrial wastes, biological purification, biomethane, metagenomics, sulfur oxidizing microorganisms.

ABSTRACT

A large amount of wastes is generated by agro-industry and can be valorized to obtain useful products with higher added value, thus reducing environmental impact. There are alternatives to valorize these wastes and the production of bioenergy has been a great precedent, from the production of biodiesel, bioethanol and biogas that is possible by the use of biomass. Biogas production by methanogenesis is an alternative for the generating biofuels and energy. However, a problem arises during biogas production due to the presence of hydrogen sulfide (and other compounds), which is toxic and can damage the biogas plant (up concentrations of 658 ppmv), increase SOx emissions and inhibit the fermentation process of biogas production, so it is necessary to eliminate them. The biological removal method of this compound is included, by oxidization through microorganisms. The objective of this review is to expose the trends in the use of the microorganisms mentioned in environmental biotechnology, particularly their role in biogas purification.


REFERENCES

  1. Abatzoglou, N. & Boivin, S. (2009). A review of biogas purification processes. Biofuels, Bioproducts & Biorefining, 3, 42–71. https://doi.org/10.1002/bbb.117

  2. Achinas, S., Achinas, V. & Euverink, G. J. W. (2017). A technological overview of biogas production from biowaste. Engineering, 3(3), 299–307. https://doi. org/10.1016/J.ENG.2017.03.002

  3. Antonelli, J., Lindino, C. A., Rodrigues de Azevedo, J. C., Melegari de Souza, S. N., Cremonez, P. A. & Rossi, E. (2016). Biogas production by the anaerobic digestion of whey. Revista de Ciências Agrárias, 39(3), 463–467. https://doi.org/10.19084/RCA15087

  4. Asif, M. & Muneer, T. (2007). Energy supply, its demand and security issues for developed and emerging economies. Renewable and Sustainable Energy Reviews, 11(7), 1388–1413. https://doi.org/10.1016/j.rser.2005.12.004

  5. Awe, O. W., Zhao, Y., Nzihou, A., Minh, D. P. & Lyczko, N. (2017). A review of biogas utilization, purification and upgrading technologies. Waste and Biomass Valorization, 8(2), 267–283. https://doi.org/10.1007/s12649-016-9826-4

  6. Barbusiński, K. & Kalemba, K. (2016). Use of biological methods for removal of H2S from biogas in wastewater treatment plants– a review. Architecture Civil Engineering Environment, 9(1), 103–112.

  7. Barrera, E. L., Spanjers, H., Dewulf, J., Romero, O. & Rosa, E. (2013). The sulfur chain in biogas production from sulfate-rich liquid substrates: A review on dynamic modeling with vinasse as model substrate. Journal of Chemical Technology and Biotechnology, 88(8), 1405– 1420. https://doi.org/10.1002/jctb.4071

  8. Basurto, S. & Escalante, R. (2012). Impacto de la crisis en el sector agropecuario en México. ECONOMIÍAunam, 9(25), 51–73.

  9. Caruso, M., Braghieri, A., Capece, A., Napolitano, F., Romano, P., Galgano, F., Altieri, G. & Genovese, F. (2019). Recent Updates on the Use of Agro-Food Waste for Biogas Production. Applied Sciences, 9(6), 1217. https://doi.org/10.3390/app9061217

  10. Castillo-Rodríguez, F. (2005). Biotecnología Ambiental. Madrid, España: Tébar.

  11. Castro, J. (2011). Perspectivas de la demanda energética global. Petrotecnia, 11(1), 54–70. Retrieved from http:// www.petrotecnia.com.ar/febrero2011/sin/Demanda.pdf

  12. Chakravarty, G. (2016). Evaluation of fruit wastes as substrates for the production of biogas. Scholars Research Library Annals of Biological Research, 7(3), 25–28. Retrieved from http://scholarsresearchlibrary.com/archive.html

  13. Chu, S. & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature, 488(7411), 294– 303. https://doi.org/10.1038/nature11475

  14. Cortés-López, N., Montor-Antonio, J., Olvera-Carranza, C., Peña-Castro, J. & Del Moral-Ventura, S. (2014). Metagenómica: una ventana de oportunidad a nuevos genes y genomas microbianos. Revista Iberoamericana de Ciencias, 1(7), 45–58. Retrieved from www.reibci.org

  15. Cúcio, C., Overmars, L., Engelen, A. H. & Muyzer, G. (2018). Metagenomic Analysis Shows the Presence of Bacteria Related to Free-Living Forms of Sulfur-Oxidizing Chemolithoautotrophic Symbionts in the Rhizosphere of the Seagrass Zostera marina. Frontiers in Marine Science, 5(May), 1–15. https://doi.org/10.3389/fmars.2018.00171

  16. Cury, R. K., Aguas, M. Y., Martínez, M. A., Olivero, V. R. & Chams, Ch. L. (2017). Residuos agroindustriales su impacto, manejo y aprovechamiento Agroindustriales waste impact , management and exploitation. Revista Colombiana de Ciencia Animal, 9, 122–132. https://doi. org/10.24188/recia.v9.nS.2017.530

  17. D’Auria, G., Artacho, A., Rojas, R. A., Bautista, J. S., Méndez, R., Gamboa, M. T., Gamboa, J. R. & Gómez- Cruz, R. (2018). Metagenomics of bacterial diversity in villa Luz caves with sulfur water springs. Genes, 9(1), 1–13. https://doi.org/10.3390/genes9010055

  18. Díaz-Rodríguez, Y., Acosta-Díaz, S., Barrios-San Martín, Y., Pascual Mustelier-Pérez, S., Contrera-Aviléz, R. & González-Hernández, F. (2017). Caracterización de un consorcio bacteriano sulfooxidante aislado de un sistema de Biofiltración de gas natural. In Revista CENIC Ciencias Biológicas, (Vol. 48). Retrieved from https:// www.redalyc.org/pdf/1812/181250961005.pdf

  19. Diep, N. Q., Sakanishi, K., Nakagoshi, N., Fujimoto, S., Minowa, T. & Tran, X. D. (2012). Biorefinery: concepts, current status, and delevopment trends. International Journal of Biomass & Renewables, 2(1), 1–8.

  20. Elaiyaraju, P. & Partha, N. (2016). Studies on biogas production by anaerobic process using agroindustrial wastes. Research in Agricultural Engineering, 62(2), 73– 82. https://doi.org/10.17221/65/2013-rae

  21. ESAMUR. (2011). Del Análisis del Biogás a la Planta de Generación (MWM Energy. Eficiency. Environment, ed.). Retrieved from http://www.esamur.com/public/file/ ponencia136.compressed.pdf

  22. Escalante, S. R. I. & Catalán, H. (2008). Situación actual del sector agropecuario en México: perspectivas y retos. Economía Informa, 350, 7–25.

  23. Fonseca, A., Ishoey, T., Espinoza, C., Pérez-Pantoja, D., Manghisi, A., Morabito, M., Salas-Burgos, A. & Gallardo, V. A. (2017). Genomic features of “Candidatus Venteria ishoeyi”, a new sulfur-oxidizing macrobacterium from the Humboldt Sulfuretum off Chile. PLoS ONE, 12(12), e0188371. https://doi.org/10.1371/journal.pone.0188371

  24. Forster-Carneiro, T., Isaac, R., Pérez, M., & Schvartz, C. (2012). Anaerobic Digestion: pretreatments of substrates. In A. Mudhoo (Ed.), Biogas Production: pretreatment methods in anaerobic digestion (pp. 1–20). New Jersey: John Wiley & Sons.

  25. Gholipour, S., Mehrkesh, P., Azin, E., Nouri, H., Rouhollahi, A. A. & Moghimi, H. (2018). Biological treatment of toxic refinery spent sulfidic caustic at low dilution by sulfuroxidizing fungi. Journal of Environmental Chemical Engineering, 6(2), 2762–2767. https://doi.org/10.1016/j. jece.2018.04.026

  26. Gomez, C. D. C. (2013). Biogas as an energy option: an overview. In A. Wellinger, J. Murphy & D. Baxter (Eds.), The Biogas Handbook: Science, production and applications (pp. 1–16). Cambridge: Woodhead Publishing.

  27. Grande-Tovar, C. D. (2016). Valorización biotecnológica de residuos agrícolas y agroindustriales. Cali: Bonaventuriana.

  28. Gros, O. (2017). First description of a new uncultured epsilon sulfur bacterium colonizing marine mangrove sediment in the Caribbean: Thiovulum sp. strain karukerense. FEMS Microbiology Letters, 364, 1–8. https://doi.org/10.1093/ femsle/fnx172

  29. Guo, M., Song, W. & Buhain, J. (2015). Bioenergy and biofuels: History, status, and perspective. Renewable and Sustainable Energy Reviews, 42, 712–725. https://doi. org/https://doi.org/10.1016/j.rser.2014.10.013

  30. Hossain, A. B. M. S. & Mekhled, M. A. (2010). Biodiesel fuel production from waste canola cooking oil as sustainable energy and environmental recycling process. Australian Journal of Crop Science, 4(7), 543–549.

  31. Hublin, A., Schneider, D. R. & Dzodan, J. (2014). Utilization of biogas produced by anaerobic digestion of agroindustrial waste: Energy, economic and environmental effects. Waste Management and Research, 32(7), 626– 633. https://doi.org/10.1177/0734242X14539789

  32. Ingale, S., Joshi, S. J. & Gupte, A. (2014). Production of bioethanol using agricultural waste: banana pseudo stem. Brazilian Journal of Microbiology, 45(3), 885–892.

  33. Kambam, V., Soundararajan, D., Raghupati, S. & Mathivanan, S. (2015). Comparative Study of Sulphur Oxidizing Bacteria Isolated from Different Comparative Study of Sulphur Oxidizing Bacteria Isolated from Different Wastes. International Journal of Extensive Research, 12, 1–7.

  34. Llaneza, H., Moris, M. A., González Azpíroz, L. & González, E. (2010). Caracterización, Purificación y Control del Biogás. In PSE PROBIOGAS (Ed.), Estudio de la Viabilidad de Sistemas de Purificación y Aprovechamiento de Biogás (p. 28). Retrieved from http://213.229.136.11/ bases/ainia_probiogas.nsf/0/7559B244B63EB155C1257 53F0058E255/$FILE/Cap1.pdf

  35. Madigan, M. T., Martinko, J. M., Dunlap, P. V. & Clark, D. P. (2009). Brock: Biología de los microorganismos. Madrid: Pearson Education.

  36. Mejías-Brizuela, N., Orozco-Guillén, E. & Galáan- Hernández, N. (2016). Aprovechamiento de los residuos agroindustriales y su contribución al desarrollo sostenible de México. Revista de Ciencias Ambientales y Recursos Naturales, 2(6), 27–41. Retrieved from www.ecorfan. org/spain

  37. Moreno-Andrade, I., Moreno, G. & Quijano, G. (2019). Theoretical framework for the estimation of H2S concentration in biogas produced from complex sulfurrich substrates. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-04846-3

  38. Mussatto, S. I., Ballesteros, L. F., Martins, S. L. F. & Teixeira, J. A. (2012). Use of agro-industrial wastes in solidstate fermentation processes. In S. Kuan-Yeow & G. Xinxin (Eds.), Industrial Waste (pp. 121–140). Croatia: InTechOpen.

  39. Naz, S., Ahmad, N., Akhtar, J., Ahmad, N. M., Ali, A. & Zia, M. (2016). Management of citrus waste by switching in the production of nanocellulose. IET Nanobiotechnology, 10(6) 395-399. https://doi.org/10.1049/iet-nbt.2015.0116.

  40. Ortega-Viera, L., Crespo-Artigas, A., Gandón-Hernández, J., Rodríguez-Muñoz, S., Fernández-Santana, E. & Ameneiros-Martínez, J. M. (2017). Modelo fenomenológico que describe el proceso de purificación de biogás empleando membranas de zeolita natural. Revista Mexicana de Ingeniería Química, 16(2), 531–539.

  41. Ortega, V. L., Rodríguez, M. S., Fernández, S. E. & Bárcenas, P. L. (2015). Principales métodos para la desulfuración del biogás. Ingeniería Hidráulica y Ambiental, 36(1), 45–56.

  42. Padilla de la Rosa, J. D., Ruiz-Palomino, P., Arriola-Guevara, E., García-Fajardo, J., Sandoval, G. & Guatemala- Morales, G. M. (2018). A Green process for the extraction and purification of hesperidin from mexican lime peel (Citrus aurantifolia Swingle) that is extendible to the citrus genus. Processes, 6(266), 1–13.

  43. Palma-López, D. J., Zavala-Cruz, J., Cámara-Reyna, J. C., Ruiz-Maldonado, E. & Salgado-García, S. (2016). Uso de residuos de la agroindustria de la caña de azúcar (Saccharum spp.) para elaborar abonos orgánicos. Agroproductividad, 9(7), 29–34.

  44. Pinto, L. & Quipuzco, L. (2015). Aprovechamiento de aguas residuales domésticas para producción de biogás y biol, mediante digestores de carga diaria. Anales Científicos, 76(1), 87–93. https://doi.org/10.21704/ac.v76i1.768

  45. Ponce, E. (2016). Métodos sencillos en obtención de biogás rural y su conversión en electricidad. IDECIA (Chile), 34(5), 75–79. https://doi.org/10.4067/s0718- 34292016005000011

  46. Quijano, G., Figueroa-González, I. & Buitrón, G. (2018). Fully aerobic two-step desulfurization process for purification of highly H2S-laden biogas. Journal of Chemical Technology and Biotechnology, 93(12), 3553– 3561. https://doi.org/10.1002/jctb.5732

  47. Quirino, C., Duana, A., Hernández, M. & García, G. (2016). Desarrollo económico del sector agropecuario en México a 20 años de la firma TLCAN. Revista TECSISTECATL, 8(20), 1–20.

  48. Ramaraj, R. & Dussadee, N. (2015). Biological purification processes for biogas using algae cultures: a review. International Journal of Sustainable and Green Energy, 4(1), 20–32. https://doi.org/10.11648/j. ijrse.s.2015040101.14

  49. Rasool, U. & Hemalatha, S. (2016). A review on bioenergy and biofuels: sources and their production. Brazilian Journal of Biological Sciences, 3(5), 3. https://doi.org/10.21472/ bjbs.030501

  50. Rawat, R. & Rawat, S. (2015). Colorless sulfur oxidizing bacteria from diverse habitats. Advances in Applied Science Research, 6(4), 230–235.

  51. Reyes, A. E. A. (2017). Generación de biogás mediante el proceso de digestión anaerobia, a partir del aprovechamiento de sustratos orgánicos. Revista Científica de FAREM-Estelí. Medio Ambiente, Tecnología y Desarrollo Humano, 6(24), 60–81.

  52. Rossmassler, K., Hanson, T. & Campbell, B. (2016). Diverse sulfur metabolisms from two subterranean sulfidic spring systems. FEMS Microbiology Letters, 363(16), fnw162(1- 8). https://doi.org/10.1093/femsle/fnw162.

  53. Rubiano-Labrador, C., Hurtado, A. H. & Salamanca, J. I. (2018). Búsqueda de bacterias oxidadoras de azufre para su potencial uso en la producción de biogás de alta pureza. Revista de Investigación Agraria y Ambiental, 9(2), 295–304.

  54. Safdar, M. N., Kausar, T., Jabbar, S., Mumtaz, A., Ahad, K. & Saddozai, A. A. (2017). Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. Journal of Food and Drug Analysis, 25, 488–500.

  55. San-Valero, P., Penya-roja, J. M., Javier Álvarez-Hornos, F., Buitrón, G., Gabaldón, C. & Quijano, G. (2019). Fully aerobic bioscrubber for the desulfurization of H2S-rich biogas. Fuel, 241, 884–891. https://doi.org/10.1016/j. fuel.2018.12.098

  56. Sánchez-Aldana, D., Aguilar, C. N., Nevarez-Moorillon, G. V., & Esquivel-Contreras, J. C. (2013). Comparative extraction of pectin and polyphenols from mexican lime pomace and bagasse. American Journal of Agricultural and Biological Science, 8(4), 309–322.

  57. Sarabia-Méndez, M., Laines-Canepa, J., Sosa-Oliver, J. & Escalante-Espinosa, E. (2017). Producción de biogás mediante codigestión anaerobia de excretas de borrego y rumen adicionadas con lodos procedentes de una planta de aguas residuales. Revista Internacional de Contaminación Ambiental, 33(1), 109–116. https://doi. org/10.20937/RICA.2017.33.01.10

  58. Sharrar, A. M., Flood, B. E., Bailey, J. V, Jones, D. S., Biddanda, B. A., Ruberg, S. A.,Marcus, D. N. & Dick, G. J.(2017). Novel large sulfur bacteria in the metagenomes of groundwater-fed chemosynthetic microbial mats in the Lake Huron basin. Frontiers in Microbiology, 8, Art 791. 1-15. https://doi.org/10.3389/ fmicb.2017.00791.

  59. Singh, R.S. & Walia, A. (2016). Biofuels Historical Perspectives and Public opinions. In RA Singh, A. Pandey, & E. Gnansounou (Eds.), Biofuels, Production and Future Perspective (1st editio, pp. 3–23). CRC Press.

  60. Solera del Rio (2014). De Residuo a Recurso. El Camino hacia la Sostenibilidad. Ediciones Mundi-Prensa, Madrid, España.

  61. Svensson, M. (2013). Biomethane for transport applications. In A. Wellinger, J. Murphy, & D. Baxter (Eds.), The Biogas Handbook: Science, production and applications (pp. 428–443). Cambridge: Woodhead Publishing.

  62. Tapia-Gómez, A., Laines-Canepa, J. & Sosa-Olivier, J. (2017). Codigestión de residuos sólidos orgánicos generados en las cafeterías de la División Académica de Ciencias Biológicas. Journal of Energy, Engineering Optimization and Sustainability, 1(1), 71–82. https://doi.org/10.19136/ jeeos.a1n1.1725

  63. Tourna, M., Maclean, P., Condron, L., O’Callaghan, M. & Wakelin, S. A. (2014). Links between sulphur oxidation and sulphur-oxidizing bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS Microbiology Ecology, 88(3), 538–549. https:// doi.org/10.1111/1574-6941.12323

  64. Vargas-Corredor, Y. K. & Pérez-Pérez, L. I. (2018). Aprovechamiento de residuos agroindustriales para el mejoramiento de la calidad del ambiente. Revista Facultad de Ciencias Básicas, 14(1), 59–72.

  65. Vidyalakshmi, R., Paranthaman, R. & Bhakyaraj, R. (2009). Sulphur oxidizing bacteria and pulse nutrition- a review. World Journal of Agricultural Sciences, 5(3), 270–278.

  66. Yepes, S. M., Naranjo, L. J. M. & Sánchez, F. O. (2008). Valorización de residuos agroindustriales- frutas- en Medellín y el sur del Valle del Aburrá, Colombia. Revista Facultad Nacional de Agronomía Medellín, 61(1), 4422–4431.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2019;22