2019, Number 3
Métodos actuales empleados para el diagnóstico de tuberculosis y su efi cacia en diversos entornos clínicos
Language: Spanish
References: 65
Page: 170-180
PDF size: 376.50 Kb.
ABSTRACT
Background: Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis, which is estimated to produce an asymptomatic (latent) infection in about 2 billion people worldwide. Th e World Health Organization (WHO) recommends sputum smear microscopy for the diagnosis of active TB. Chest radiography is usually used for patients who are negative for the detection of acid-fast bacilli in sputum, although it is not specifi c or sensitive enough for all people with TB. Th e tuberculin skin test using proteins of Mycobacterium tuberculosis can cross-react with the BCG vaccine, and tests based on secretion of the cytokine interferon gamma (IFNg) are still very expensive for a massive use. Objective: To provide an overview of the advantages and disadvantages of current methods for TB diagnosis and its application in low budget clinical settings. Materials and methods: Bibliographic search in Pubmed with the key words “tuberculosis” and “diagnosis” (https://www.ncbi. nlm.nih.gov/pubmed/?term=tuberculosis+diagnosis) published as of March, 2018. Results: Th ere are new diagnostic methods according to the progress of molecular biology. Tests that use serum as a sample to determine if TB exists are suitable for countries with limited resources because they oft en require readily available equipment. Conclusions: Recently, high performance approaches (“Omic” technologies) off er the option of searching for new biomarkers, derived from the host or the pathogen, which should translate into technologies or devices that ideally can be easily adopted in all clinical laboratories.REFERENCES
Berry, M.P.R., Graham, C.M., McNab, F.W., Xu, Z.H., Bloch, S.A.A., Oni, T., Wilkinson, K.A., Banchereau, R., Skinner, J., Wilkinson, R.J., Quinn, C., Blankenship, D., Dhawan, R., Cush, J.J., Mejias, A., Ramilo, O., Kon, O.M., Pascual, V., Banchereau, J., Chaussabel, D., O’Garra, A., 2010. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature. 466, 973-U998.
Bloom, C.I., Graham, C.M., Berry, M.P.R., Rozakeas, F., Redford, P.S., Wang, Y.Y., Xu, Z.H., Wilkinson, K.A., Wilkinson, R.J., Kendrick, Y., Devouassoux, G., Ferry, T., Miyara, M., Bouvry, D., Dominique, V., Gorochov, G., Blankenship, D., Saadatian, M., Vanhems, P., Beynon, H., Vancheeswaran, R., Wickremasinghe, M., Chaussabel, D., Banchereau, J., Pascual, V., Ho, L.P., Lipman, M., O’Garra, A., 2013. Transcriptional Blood Signatures Distinguish Pulmonary Tuberculosis, Pulmonary Sarcoidosis, Pneumonias and Lung Cancers. Plos One. 8.
Boehme, C.C., Nabeta, P., Henostroza, G., Raqib, R., Rahim, Z., Gerhardt, M., Sanga, E., Hoelscher, M., Notomi, T., Hase, T., Perkins, M.D., 2007. Operational feasibility of using loopmediated isothermal amplifi cation for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. J Clin Microbiol. 45, 1936-1940.
Cannas, A., Goletti, D., Girardi, E., Chiacchio, T., Calvo, L., Cuzzi, G., Piacentini, M., Melkonyan, H., Umansky, S.R., Lauria, F.N., Ippolito, G., Tomei, L.D., 2008. Mycobacterium tuberculosis DNA detection in soluble fraction of urine from pulmonary tuberculosis patients. Int J Tuberc Lung D. 12, 146-151.
DiNardo, A.R., Kay, A.W., Maphalala, G., Harris, N.M., Fung, C., Mtetwa, G., Ustero, P., Dlamini, S., Ha, N., Graviss, E.A., Mejia, R., Mandalakas, A.M., 2018. Diagnostic and Treatment Monitoring Potential of A Stool-Based Quantitative Polymerase Chain Reaction Assay for Pulmonary Tuberculosis. Am J Trop Med Hyg.
Jimenez-Corona, M.E., Cruz-Hervert, L.P., Garcia-Garcia, L., Ferreyra-Reyes, L., Delgado-Sanchez, G., Bobadilla-Del-Valle, M., Canizales-Quintero, S., Ferreira-Guerrero, E., Baez-Saldana, R., Tellez-Vazquez, N., Montero-Campos, R., Mongua-Rodriguez, N., Martinez-Gamboa, R.A., Sifuentes-Osornio, J., Ponce-de-Leon, A., 2013. Association of diabetes and tuberculosis: impact on treatment and post-treatment outcomes. Th orax. 68, 214-220.
Kunnath-Velayudhan, S., Salamon, H., Wang, H.Y., Davidow, A.L., Molina, D.M., Huynh, V.T., Cirillo, D.M., Michel, G., Talbot, E.A., Perkins, M.D., Felgner, P.L., Liang, X., Gennaro, M.L., 2010. Dynamic antibody responses to the Mycobacterium tuberculosis proteome. Proc Natl Acad Sci U S A. 107, 14703-14708.
Lawn, S.D., Kerkhoff , A.D., Burton, R., Schutz, C., van Wyk, G., Vogt, M., Pahlana, P., Nicol, M.P., Meintjes, G., 2015. Rapid microbiological screening for tuberculosis in HIV-positive patients on the fi rst day of acute hospital admission by systematic testing of urine samples using Xpert MTB/RIF: a prospective cohort in South Africa. Bmc Med. 13.
McNerney, R., Maeurer, M., Abubakar, I., Marais, B., McHugh, T.D., Ford, N., Weyer, K., Lawn, S., Grobusch, M.P., Memish, Z., Squire, S.B., Pantaleo, G., Chakaya, J., Casenghi, M., Migliori, G.B., Mwaba, P., Zijenah, L., Hoelscher, M., Cox, H., Swaminathan, S., Kim, P.S., Schito, M., Harari, A., Bates, M., Schwank, S., O’Grady, J., Pletschette, M., Ditui, L., Atun, R., Zumla, A., 2012. Tuberculosis diagnostics and biomarkers: needs, challenges, recent advances, and opportunities. J Infect Dis. 205 Suppl 2, S147-158.
Moore, D.A., Evans, C.A., Gilman, R.H., Caviedes, L., Coronel, J., Vivar, A., Sanchez, E., Pinedo, Y., Saravia, J.C., Salazar, C., Oberhelman, R., Hollm-Delgado, M.G., LaChira, D., Escombe, A.R., Friedland, J.S., 2006. Microscopic-observation drugsusceptibility assay for the diagnosis of TB. N Engl J Med. 355, 1539-1550.
Nakiyingi, L., Moodley, V.M., Manabe, Y.C., Nicol, M.P., Holshouser, M., Armstrong, D.T., Zemanay, W., Sikhondze, W., Mbabazi, O., Nonyane, B.A.S., Shah, M., Joloba, M.L., Alland, D., Ellner, J.J., Dorman, S.E., 2014. Diagnostic Accuracy of a Rapid Urine Lipoarabinomannan Test for Tuberculosis in HIV-Infected Adults. Jaids-J Acq Imm Def. 66, 270-279.
Song, L.S., Wallstrom, G., Yu, X.B., Hopper, M., Van Duine, J., Steel, J., Park, J., Wiktor, P., Kahn, P., Brunner, A., Wilson, D., Jenny-Avital, E.R., Qiu, J., Labaer, J., Magee, D.M., Achkar, J.M., 2017. Identifi cation of Antibody Targets for Tuberculosis Serology using High-Density Nucleic Acid Programmable Protein Arrays. Mol Cell Proteomics. 16, S277-S289.
Th eron, G., Peter, J., Calligaro, G., Meldau, R., Hanrahan, C., Khalfey, H., Matinyenya, B., Muchinga, T., Smith, L., Pandie, S., Lenders, L., Patel, V., Mayosi, B.M., Dheda, K., 2014. Determinants of PCR performance (Xpert MTB/RIF), including bacterial load and inhibition, for TB diagnosis using specimens from diff erent body compartments. Sci Rep-Uk. 4.
Th ompson, E.G., Du, Y., Malherbe, S.T., Shankar, S., Braun, J., Valvo, J., Ronacher, K., Tromp, G., Tabb, D.L., Alland, D., Shenai, S., Via, L.E., Warwick, J., Aderem, A., Scriba, T.J., Winter, J., Walzl, G., Zak, D.E., Catalysis, T.B.B.C., 2017. Host blood RNA signatures predict the outcome of tuberculosis treatment. Tuberculosis (Edinb). 107, 48-58.
Zak, D.E., Penn-Nicholson, A., Scriba, T.J., Th ompson, E., Suliman, S., Amon, L.M., Mahomed, H., Erasmus, M., Whatney, W., Hussey, G.D., Abrahams, D., Kafaar, F., Hawkridge, T., Verver, S., Hughes, E.J., Ota, M., Sutherland, J., Howe, R., Dockrell, H.M., Boom, W.H., Th iel, B., Ottenhoff , T.H.M., Mayanja- Kizza, H., Crampin, A.C., Downing, K., Hatherill, M., Valvo, J., Shankar, S., Parida, S.K., Kaufmann, S.H.E., Walzl, G., Aderem, A., Hanekom, W.A., Acs, groups, G.C.c.s., 2016. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet. 387, 2312-2322.
Zribi, B., Roy, E., Pallandre, A., Chebil, S., Koubaa, M., Mejri, N., Gomez, H.M., Sola, C., Korri-Youssoufi, H., Haghiri- Gosnet, A.M., 2016. A microfluidic electrochemical biosensor based on multiwall carbon nanotube/ferrocene for genomic DNA detection of in clinical isolates. Biomicrofluidics. 10.