medigraphic.com
SPANISH

Revista Clínica de la Escuela de Medicina de la Universidad de Costa Rica

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 1

<< Back Next >>

Rev Clin Esc Med 2020; 10 (1)

Valor P
Correcta e incorrecta interpretación

Marin BL, Paredes RD
Full text How to cite this article

Language: Spanish
References: 14
Page: 45-52
PDF size: 588.71 Kb.


Key words:

Evidence based medicine, statistics, research, p value, confidence interval, Bayes, Fisher, Neyman, inference.

ABSTRACT

Thanks to the predominance of the frequentist school, nowadays, inference from the data obtained in clinical trials, is mainly done by using the P value and the alpha probability of error. These two, despite being useful and important statistical tools, have limitations that are not widely understood, leading to confusion about its meaning and utility. When doing clinical research, there must be good comprehension of the problem at hand, the outcomes and the optimal statistical tools to employ, in order to get conclusions as true as possible. The preference of some statistical methods over another, generates a limited vision and interpretation of the evidence.


REFERENCES

  1. Bland JM Altman DG. Bayesians and frequentists. BMJ : British Medical Journal. 1998;317(7166):1151-1160.

  2. Mark DB, Lee KL, Harrell FE. Understanding the Role of P Values and Hypothesis Tests in Clinical Research. JAMA Cardiol. 2016;1(9):1048–1054.

  3. Goodman S. Toward Evidence-Based Medical Statistics. 1: The P Value Fallacy. Ann Intern Med. 1999;130:995-1004.

  4. Cohen HW. P values: use and misuse in medical literature. Am J Hypertens. 2011 Jan;24(1):18-23.

  5. Goodman S. A dirty dozen: twelve p-value misconceptions. Semin Hematol. 2008 Jul;45(3):135-40.

  6. Ioannidis JPA. The Proposal to Lower P Value Thresholds to .005. JAMA. 2018 Apr 10;319(14):1429-1430.

  7. Wasserstein RL Lazar NA. The ASA’s statement on P-values: context, process, and purpose. Am Stat. 2016;70(2):129-133.

  8. Goodman S MD PhD. Toward Evidence-Based Medical Statistics. 2: The Bayes Factor. Ann Intern Med. 1999;130:1005-1013.

  9. Davidoff F. Standing statistics right side up. Ann Intern Med. 1999 Jun 15;130(12):1019-21.

  10. Ahlbom A. Significance testing: Why does it prevail? Eur J Epidemiol. 2017 Jan;32(1):1-2.

  11. Vaux DL. Research methods: Know when your numbers are significant. Nature. 2012 Dec 13;492(7428):180-1.

  12. Gardner MJ Altman DG. Confidence intervals rather than P values: estimation rather than hypothesis testing Br Med J (Clin Res Ed). 1986 Mar 15;292(6522) 746-50.

  13. International Committee of Medical Journal Editors [www.icmje.org]. Recommendations for the Conduct, Reporting, Editing and Publication of Scholarly Work in Medical Journals – updated December 2016. http://www.ICMJE.org. Accesado en Julio 16, 2018.

  14. Nuzzo R. Scientific Method: statistical errors. Nature. 2014; 506, 150-152.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Clin Esc Med. 2020;10