medigraphic.com
SPANISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 3

<< Back Next >>

salud publica mex 2020; 62 (3)

Arsenic exposure in northern Mexican women

Gamboa-Loira B, Cebrián ME, López-Carrillo L
Full text How to cite this article

Language: English
References: 34
Page: 262-269
PDF size: 307.46 Kb.


Key words:

arsenic, metabolism, Mexico, sociodemographic determinants, women.

ABSTRACT

Objective. To describe interindividual metabolism variations and sociodemographic characteristics associated to urinary arsenic, and to estimate the arsenic contamination in water from urinary total arsenic (TAs). Materials and methods. Women (n=1 028) from northern Mexico were interviewed about their sociodemographic characteristics and their urinary concentrations of arsenic species were measured by liquid chromatography. Inorganic arsenic (iAs) in water was estimated from urinary TAs. Results. Women were 20-88 years old. TAs in urine ranged from p10=3.41 to p90=56.93 µg/L; 74% of women had levels ›6.4 µg/L. iAs in water varied from p10=3.04 to p90=202.12 µg/L; 65% of women had concentrations ›10 µg/L, and 41%, concentrations ›25 µg/L. Large variations in iAs metabolism were observed. TAs was significantly negatively associated with age and schooling, and positively with the state of residence. Conclusion. Exposure to iAs is an environmental problem in Mexico. Individual variations in metabolism are a challenge to design prevention and control programs.


REFERENCES

  1. Bundschuh J, Litter MI, Parvez F, Román-Ross G, Nicolli HB, Jean JS, et al. One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Sci Total Environ. 2012;429:2-35. https://doi.org/10.1016/j.scitotenv.2011.06.024

  2. Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B, Nayak B, et al. Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J Health Popul Nutr. 2006:24(2):142-63. https://doi.org/10.3329/jhpn.v24i2.727

  3. World Health Organization. Exposure to Arsenic: A Major Public Health Concern [Internet]. Geneva: 2010 [cited 2018 Jun 25]. Available from: http://www.who.int/ipcs/features/arsenic.pdf?ua=1

  4. Hays SM, Aylward LL, Gagné M, Nong A, Krishnan K. Biomonitoring Equivalents for inorganic arsenic. Regul Toxicol Pharmacol. 2010;58(1):1-9. https://doi.org/10.1016/j.yrtph.2010.06.002

  5. Smedley PL, Kinniburgh DG. A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochemistry. 2002;17:517- 68. https://doi.org/10.1016/S0883-2927(02)00018-5

  6. Secretaría de Salud. Norma Oficial Mexicana NOM-127- SSA1-1994-2000 Salud ambiental, Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización (Modificación del año 2000). México: Secretaría de Salud, 2000 [cited 2018 Jun 25]. Available from: http://www.salud.gob.mx/ unidades/cdi/nom/m127ssa14.html

  7. Agency for Toxic Substances and Disease Registry. Toxicological profile for arsenic. Atlanta: Department of Health and Human Services, Public Health Service, 2007 [cited 2018 Jun 25]. Available from: https://www. atsdr.cdc.gov/toxprofiles/tp2.pdf

  8. Shen H, Niu Q, Xu M, Rui D, Xu S, Feng G, et al. Factors affecting arsenic methylation in arsenic-exposed humans: A systematic review and meta-analysis. Int J Environ Res Public Health. 2016;13(2):205. https://doi. org/10.3390/ijerph13020205

  9. Tseng C-H. Arsenic Methylation, Urinary Arsenic Metabolites and Human Diseases: Current Perspective. J Environ Sci Heal Part C. 2007;25(1):1-22. https://doi.org/10.1080/10590500701201695

  10. Kuo C-C, Moon KA, Wang S-L, Silbergeld E, Navas-Acien A. The Association of Arsenic Metabolism with Cancer, Cardiovascular Disease, and Diabetes: A Systematic Review of the Epidemiological Evidence. Environ Health Perspect. 2017;125(8):087001. https://doi.org/10.1289/EHP577

  11. Tseng CH. A review on environmental factors regulating arsenic methylation in humans. Toxicology and Applied Pharmacology. 2009;235(3):338-50. https://doi.org/10.1016/j.taap.2008.12.016

  12. Hernández A, Marcos R. Genetic variations associated with interindividual sensitivity in the response to arsenic exposure. Pharmacogenomics. 2008;9(8):1113-32. https://doi.org/10.2217/14622416.9.8.1113

  13. López-Carrillo L, Gamboa-Loira B, Becerra W, Hernández-Alcaraz C, Hernández-Ramírez RU, Gandolfi AJ, et al. Dietary micronutrient intake and its relationship with arsenic metabolism in Mexican women. Environ Res. 2016;151:445-50. https://doi.org/10.1016/j.envres.2016.08.015

  14. Quiller G, Mérida-Ortega Á, Rothenberg SJ, Cebrián ME, Gandolfi AJ, Franco-Marina F, et al. Dietary flavonoids improve urinary arsenic elimination among Mexican women. Nutr Res. 2018;55:65-71. https://doi. org/10.1016/j.nutres.2018.04.012

  15. Gamboa-Loira B, Hernández-Alcaraz C, Gandolfi AJ, Cebrián ME, Burguete-García A, García-Martínez A, et al. Arsenic methylation capacity in relation to nutrient intake and genetic polymorphisms in one-carbon metabolism. Environ Res. 2018;164:18-23. https://doi.org/10.1016/j. envres.2018.01.050

  16. López-Carrillo L, Hernández-Ramírez RU, Gandolfi AJ, Ornelas- Aguirre JM, Torres-Sánchez L, Cebrian ME. Arsenic methylation capacity is associated with breast cancer in northern Mexico. Toxicol Appl Pharmacol. 2014;280:53-9. https://doi.org/10.1016/j.taap.2014.07.013

  17. Gilbert-Diamond D, Cottingham KL, Gruber JF, Punshon T, Sayarath V, Gandolfi AJ, et al. Rice consumption contributes to arsenic exposure in US women. Proc Natl Acad Sci U S A. 2011;108(51):20656-60. https://doi. org/10.1073/pnas.1109127108

  18. Barr DB, Landsittel D, Nishioka M, Thomas K, Curwin B, Raymer J, et al. A survey of laboratory and statistical issues related to farmworker exposure studies. Environ Health Perspect. 2006;114(6):961-8. https://doi. org/10.1289/ehp.8528

  19. Calderon RL, Hudgens E, Le XC, Schreinemachers D, Thomas DJ. Excretion of arsenic in urine as a function of exposure to arsenic in drinking water. Environ Health Perspect. 1999;107(8):663-7. https://doi. org/10.1289/ehp.99107663

  20. Calderon RL, Hudgens EE, Carty C, He B, Le XC, Rogers J, et al. Biological and behavioral factors modify biomarkers of arsenic exposure in a U.S. population. Environ Res. 2013;126:134-44. https://doi.org/10.1016/j. envres.2013.04.004

  21. Roswall N, Hvidtfeldt U, Harrington J, Levine K, Sørensen M, Tjønneland A, et al. Predictors of Urinary Arsenic Levels among Postmenopausal Danish Women. Int J Environ Res Public Health. 2018;15(7):1340. https:// doi.org/10.3390/ijerph15071340

  22. Drewnowski A, Rehm CD, Constant F. Water and beverage consumption among adults in the United States: cross-sectional study using data from NHANES 2005-2010. BMC Public Health. 2013;13:1068. https://doi. org/10.1186/1471-2458-13-1068

  23. Martinez H. Ingesta de líquidos por adultos mexicanos; un estudio transversal. Nutr Hosp. 2014;29(5):1179-87. https://doi.org/10.3305/ nh.2014.29.5.7447

  24. Cutler DM, Lleras-Muney A, Vogl T. Socioeconomic Status and Health: Dimensions and Mechanisms. NBER Working Paper Series. Cambridge, MA: The National Bureau of Economic Research. 2008. Report No: 14333.

  25. Argos M, Parvez F, Chen Y, Hussain AZMI, Momotaj H, Howe GR, et al. Socioeconomic status and risk for arsenic-related skin lesions in Bangladesh. Am J Public Health. 2007;97(5):825-31. https://doi.org/10.2105/ AJPH.2005.078816

  26. Rosado JL, Ronquillo D, Kordas K, Rojas O, Alatorre J, Lopez P, et al. Arsenic exposure and cognitive performance in Mexican Schoolchildren. Environ Health Perspect. 2007;115(9):1371-5. https://doi.org/10.1289/ ehp.9961

  27. Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect. 2005;113(2):192-200. https://doi.org/10.1289/ehp.7337

  28. Basu A, Mitra S, Chung J, Guha-Mazumder DN, Ghosh N, Kalman D, et al. Creatinine, diet, micronutrients, and arsenic methylation in West Bengal, India. Environ Health Perspect. 2011;119(9):1308-13. https://doi. org/10.1289/ehp.1003393

  29. Nermell B, Lindberg A-L, Rahman M, Berglund M, Persson LA, El Arifeen S, et al. Urinary arsenic concentration adjustment factors and malnutrition. Environ Res. 2008;106(2):212-8. https://doi.org/10.1016/j. envres.2007.08.005

  30. Bulka CM, Mabila SL, Lash JP, Turyk ME, Argos M. Arsenic and Obesity: A Comparison of Urine Dilution Adjustment Methods. Environ Health Perspect. 2017;125(8):087020. https://doi.org/10.1289/EHP1202

  31. Mendoza-Cano O, Sánchez-Piña RA, Barrón-Quintana J, Cuevas-Arellano HB, Escalante-Minakata P, Solano-Barajas R. Riesgos potenciales de salud por consumo de agua con arsénico en Colima, México. Salud Publica Mex. 2017;59(1):34-40. https://doi.org/10.21149/8413

  32. Fisher AT, López-Carrillo L, Gamboa-Loira B, Cebrián ME. Standards for arsenic in drinking water: Implications for policy in Mexico. J Public Health Policy. 2017;38(4):395-406. https://doi.org/10.1057/s41271-017- 0087-7

  33. Camacho LM, Gutiérrez M, Alarcón-Herrera MT, Villalba MDL, Deng S. Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA. Chemosphere. 2011;83(3):211-25. https:// doi.org/10.1016/j.chemosphere.2010.12.067

  34. Swiss Federal Institute of Aquatic Science and Technology (Eawag). Groundwater Assessment Platform [Internet]. 2015 [cited June 25 2018]. Available from: https://www.gapmaps.org/Home/Public




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2020;62