medigraphic.com
SPANISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 4

<< Back Next >>

salud publica mex 2020; 62 (4)

Oogenic development and gonotrophic cycle of Aedes aegypti and Aedes albopictus in laboratory

Casas-Martínez M, Tamayo-Domínguez R, Bond-Compeán JG, Rojas JC, Weber M, Ulloa-García A
Full text How to cite this article

Language: English
References: 36
Page: 372-378
PDF size: 421.67 Kb.


Key words:

oogenic development, gonotrophic cycle, Aedes, vectors, dengue.

ABSTRACT

Objective. To determine the time of oogenic development and the length of the gonotrophic cycle of Ae. aegypti and Ae. albopictus in laboratory. Materials and methods. Bloodfed females of Ae. aegypti and Ae. albopictus were dissected every 4 h to determine the development status of the follicles according to the Christophers’ stages. Results. The minimum time of oocyte maturation in Ae. aegypti and Ae. albopictus was 64-82 h and 52-64 h post-feeding, respectively. We found that the gonotrophic cycle of Ae. aegypti (3.7-4.2 d) is longer than that of Ae. albopictus (3.2-3.7 d). The follicle length showed significant differences between species at Christophers’ stages 2” and 5, whereas follicle amplitude was different between the two mosquitoes at stages 2”, 3 and 4. Conclusions. The study provided new evidence on the reproductive strategies of Ae. aegypti and Ae. albopictus females that coexist in the Neotropical region of Mexico.


REFERENCES

  1. Weaver SC, Reisen WK. Present and future arboviral threats. Antiviral Res. 2010;85(2):328-45. https://doi.org/10.1016/j.antiviral.2009.10.008

  2. Ioos S, Mallet HP, Leparc Goffart I, Gauthier V, Cardoso T, Herida M. Current Zika virus epidemiology and recent epidemics. Med Mal Infect. 2014;44(7):302-7. https://doi.org/10.1093/infdis/jix451

  3. Defoliart GR, Watts DM, Grimstad PR. Changing patterns in mosquitoborne arboviruses. J Am Mosq Control Assoc. 1986;2(4):437-55.

  4. Halstead SB. Epidemiology. In: Halstead SB. Dengue. Tropical Medicine: Science and Practice Volume 5. London: Imperial Collage Press, 2008:75- 122. https://doi.org/10.1142/9781848162297_0003

  5. Hawley WA. The biology of Aedes albopictus. J Am Mosq Control Assoc. 1988;1:1-39.

  6. Braks MAH, Honório NA, Lounibos LP, Lourenco-De-Oliveira R, Juliano SA. Interspecific competition between two invasive species of container mosquitoes, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazi. Ann Entomol Soc Am. 2004;97(1):130-9. https://doi.org/10.1603/0013- 8746(2004)097[0130:ICBTIS]2.0.CO;2

  7. Scott TW, Chow E, Strickman D, Kittayapong P, Wirtz RA, Lorenz LH, Edman JD. Blood-feeding patterns of Aedes aegypti (Diptera: Culicidae) collected in a rural Thai village. J Med Entomol. 1993;30(5):922-7. https:// doi.org/10.1093/jmedent/30.5.922

  8. Niebylski ML, Savage HM, Nasci RS, Craig GB Jr. Blood hosts of Aedes albopictus in the United States. J Am Mosq Control Assoc. 1994;10(3):447-50.

  9. Casas-Martínez M, Torres-Estrada JL. First Evidence of Aedes albopictus (Skuse) in Southern Chiapas, Mexico. Emerg Infect Dis. 2003;9(5):606-7. https://doi.org/10.3201/eid0905.020678

  10. Casas-Martínez M, Orozco-Bonilla A, Muñoz-Reyes M, Ulloa-García A, Bond JG, Valle-Mora J, et al. A new tent trap for monitoring the daily activity of Aedes aegypti and Aedes albopictus. J Vector Ecol. 2013;38(2):277- 88. https://doi.org/10.1111/j.1948-7134.2013.12041.x

  11. Pant CP, Yasuno M. Field studies on the gonotrophic cycle of Aedes aegypti in Bangkok, Thailand. J Med Entomol. 1973;25;10(2):219-23. https:// doi.org/10.1093/jmedent/10.2.219

  12. Klowden MJ, Briegel H. Mosquito gonotrophic cycle and multiple feeding potential: contrasts between Anopheles and Aedes (Diptera: Culicidae). J Med Entomol. 1994;31(4):618-22. https://doi.org/10.1093/ jmedent/31.4.618

  13. Lima-Camara TN, Honório NA, Lourenco-de-Oliveira R. Parity and ovarian development of Aedes aegypti and Ae. albopictus (Diptera: Culicidae) in metropolitan Rio de Janeiro. J Vector Ecol. 2007;32(1):34-40. https://doi.org/10.3376/1081-1710(2007)32[34:PAODOA]2.0.CO;2

  14. Savage HM, Smith GC. Aedes albopictus y Aedes aegypti en las Américas: implicaciones para la transmisión de arbovirus e identificación de hembras adultas dañadas. Bol Oficina Sanit Panam. 1995;118(6):473-7. http://iris. paho.org/xmlui/handle/123456789/15585

  15. Centers for Disease Control and Prevention. Biología y control del Aedes aegypti. Atlanta: CDC, 1980 [cited March 1, 2011] Available from: https://stacks.cdc.gov/view/cdc/7579

  16. Clements AN. The biology of mosquitoes, Vol. 1: Development, nutrition and reproduction. New York: CABI, 2000.

  17. Gillies MT. The recognition of age-groups within populations of Anopheles gambiae by the pre-gravid rate and the sporozoite rate. Ann Trop Med Parasitol. 1954;48(1):58-74. https://doi.org/10.1080/00034983.1954. 11685599

  18. Christophers SR. The development of the egg follicle in Anophelines. Paludism. 1911;2:73-8.

  19. Mekuria Y, Granados R, Tidwell MA, Williams DC, Wirtz RA, Roberts DR. Malaria transmission potential by Anopheles mosquitoes of Dajabon, Dominican Republic. J Am Mosq Control Assoc. 1991;7(3):456-61.

  20. Bargielowski IE, Lounibos LP, Shin D, Smartt CT, Carrasquilla MC, Henry A, et al. Widespread evidence for interspecific mating between Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in nature. Infect Genet Evol. 2015;36:456-61. https://doi.org/10.1016/j.meegid.2015.08.016

  21. Ulloa-Garcia A, Gonzalez-Ceron L, Rodriguez MH. Host selection and gonotrophic cycle length of Anopheles punctimacula in southern Mexico. J Am Mosq Control Assoc. 2006;22:648-53. https://doi.org/10.2987/8756- 971X(2006)22[648:HSAGCL]2.0.CO;2

  22. Goindin D, Delannay C, Ramdini C, Gustave J, Fouque F. Parity and longevity of Aedes aegypti according to temperatures in controlled conditions and consequences on dengue transmission risks. PLoS ONE. 2015;10(8):e0135489. https://doi.org/10.1371/journal.pone.0135489

  23. Macdonald WW. Aedes aegypti in Malaya: II Larval and adult biology. Ann Trop Med Parasitol. 1956;50(4):399-414.

  24. Gubler DJ, Bhattacharya N. Observations on the reproductive history of Aedes (Stegomyia) albopictus in the laboratory. Mosq News. 1971;31(3):356-9.

  25. Reuben R. Feeding and reproduction in vector mosquitoes. Proc Indian Acad Sci. 1987;96:275-80. https://doi.org/10.1007/BF03180010

  26. Briegel H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J Insect Physiol. 1990;36(3):165-72. https:// doi.org/10.1016/0022-1910(90)90118-Y

  27. Baak-Baak CM, Ulloa-Garcia A, Cigarroa-ToledoN, Tzuc Dzul JC, Machain-Williams C, Torres-Chable OM, et al. Blood feeding status, gonotrophic cycle and survivorship of Aedes (Stegomyia) aegypti (L) (Diptera: Culicidae) caught in churches from Merida, Yucatan, Mexico. Neotrop Entomol. 2017;46(6):622-30. https://doi.org/10.1007/s13744-017-0499-x

  28. Nelson MJ. Aedes aegypti: Biology and Ecology. Pan American Health Organization: Washington DC, 1986.

  29. Day JF, Edman JD, Scott TW. Reproductive fitness and survivorship of Aedes aegypti (Diptera: Culicidae) maintained on blood, with field observations from Thailand. J Med Entomol. 1994;31(4):611-7.

  30. Carrington LB, Armijos MV, Lambrechts L, Barker CM, Scott TW. Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. PLoS ONE. 2013;8(3):e58824. https://doi. org/10.1371/journal.pone.0058824

  31. Gaio AO, Gusmão DS, Santos AV, Berbert-Molina MA, Pimenta PF, Lemos FJ. Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (diptera: culicidae) (L). Parasit Vectors. 2011;4:105. https://doi.org/10.1186/1756-3305-4-105

  32. Klowden MJ. Endogenous regulation of the attraction of Aedes aegypti mosquitoes. J Am Mosq Control Assoc. 1994;10(2):326-32.

  33. Telang A, Wells MA. The effect of larval and adult nutrition on successful autogenous egg production by a mosquito. J Insect Physiol. 2004;50(7):677-85. https://doi.org/10.1016/j.jinsphys.2004.05.001

  34. Telang A, Li Y, Noriega FG, Brown MR. Effects of larval nutrition on the endocrinology of mosquito egg development. J Exp Biol. 2006;209:645-55. https://doi.org/10.1242/jeb.02026

  35. Scott TW, Takken W. Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. Trends Parasitol. 2012;28(3):114-21. https://doi.org/10.1016/j.pt.2012.01.001

  36. Xue RD, Edman JD, Scott TW. Age and body size effects on blood meal size and multiple blood feeding by Aedes aegypti (Diptera: Culicidae). J Med Entomol. 1995;32(4):471-4. https://doi.org/10.1093/jmedent/32.4.471




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2020;62