medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2020; 23 (1)

Characterization and identification of bioactive compounds with antioxidant activity from peel, pulp and seed of tejocote fruit (Crataegus mexicana)

Robles-Botero MV, Ronquillo-de Jesús E, Quiroz-Reyes CN, Aguilar-Méndez MA
Full text How to cite this article

Language: Spanish
References: 45
Page: 1-10
PDF size: 469.88 Kb.


Key words:

Crataegus mexicana, antioxidant, polyphenol, ultrasound-assisted extraction.

ABSTRACT

Tejocote (Crataegus mexicana) is a native plant from Mexico. Its fruit is not only used as food for human consumption but also as an ornament in celebrations and traditional medicine. Despite this, it is considered an underutilized crop, and its antioxidant-containing compounds have only been minimally studied. The objective of this work was to characterize and identify secondary metabolites extracted from three fruit fractions to determine their antioxidant potential: peel, pulp and seed. Phenols and total flavonoid, flavan-3-ol, and proanthocyanidins contents were determined. Also, antioxidant activities of the three fractions were quantified by two methods: iron reduction (FRAP) and inhibition of the 2,2-diphenyl-1- picrylhydrazyl free radical (DPPH). The main compounds present in each of the fractions were identified through high-performance liquid chromatography (HPLC). The results showed that the seed extract exhibited the highest phenol and total flavonoid contents and the best antioxidant potential, which was directly related to the content of extracted compounds. The presence of epicatechin, quercetin 3-D-galactoside, and ascorbic acid was recorded in the three fractions of the fruit. In addition, catechin and vitexin were identified in seed, while in the peel and pulp the presence of chlorogenic acid and procyanidin B2 was detected.


REFERENCES

  1. Ávila-Sosa, R., Ávila-Crisóstomo, E., Reyes-Arcos, E. A., Cid- Pérez, T. S., Navarro-Cruz, A. R. & Ochoa-Velasco, C. E. (2017). Effect of blue and UV-C irradiation on antioxidant compounds during storage of hawthorn (Crataegus mexicana). Scientia Horticulturae, 217, 102−106. https:// doi.org/10.1016/j.scienta.2017.01.016

  2. Belščak, A., Komes, D., Horžić, D., Ganić, K. K. & Karlović, D. (2009). Comparative study of commercially available cocoa products in terms of their bioactive composition. Food Research International, 42, 707−716. https://doi. org/10.1016/j.foodres.2009.02.018

  3. Betancourt-Olvera, M., Nieto-Ángel, R., Urbano, B. & González-Andrés, F. (2018). Analysis of the biodiversity of hawthorn (Crataegus spp.) from the morphological, molecular, and ethnobotanical approaches, and implications for genetic resource conservation in scenery of increasing cultivation: the case of Mexico. Genetic Resources and Crop Evolution, 65, 897−916. DOI: 10.1007/s10722-017-0583-4

  4. Brand-Williams, W., Cuvelier, M. E. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28, 25−30. https://doi. org/10.1016/S0023-6438(95)80008-5

  5. Cervantes-Paz, B., Ornelas-Paz, J. J., Gardea-Béjar, A. A., Yahia, E. M., Ríos-Velasco, C., Zamudio-Flores, P. B., Ruiz-Cruz, S. & Ibarra-Junquera, V. (2018). Phenolic compounds of hawthorn (Crataegus spp.): Their biological activity associated to the protection of human health. [Compuestos fenólicos de tejocote (Crataegus spp.): Su actividad biológica asociada a la protección de la salud humana]. Revista Fitotecnia Mexicana, 41(3), 339−349.

  6. Dewanto, V., Wu, X., Adom, K. K. & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agriculture and Food Chemistry, 50, 3010−3014. DOI: 10.1021/jf0115589

  7. Edwards, J. E., Brown, P. N., Talent, N., Dickinson, T. A. & Shipley, P. R. (2012). A review of the chemistry of the genus Crataegus. Phytochemistry, 79, 5−26. https://doi. org/10.1016/j.phytochem.2012.04.006

  8. Franco, D., Sineiro, J., Rubilar, M., Sánchez, M., Jerez, M., Pinelo, M., Costoya, N. & Núñez, M. J. (2008). Polyphenols from plant materials: extraction and antioxidant power. Electronic Journal of Environmental, Agricultural and Food, 7, 3210−3216.

  9. Franco-Bañuelos, A., Contreras-Martínez, C. S., Carranza- Téllez, J. & Carranza-Concha, J. (2017). Total phenolic content and antioxidant capacity of non-native wine grapes grown in Zacatecas, Mexico. Agrociencia, 51, 661−671.

  10. Franco-Mora, O., Aguirre-Ortega, S., Morales-Rosales, E. J., González-Huerta, A. & Gutiérrez-Rodríguez, F. (2010). Caracterización morfológica y bioquímica de frutos de tejocote (Crataegus mexicana DC) de Lerma y Ocoyoacac, México. Ciencia ergo sum, 17, 61−66.

  11. Froehlicher, T., Hennebelle, T., Martin-Nizard, F., Cleenewerck, P., Hilbert, J.-L., Trotin, F. & Grec, S. (2009). Phenolic profiles and antioxidative effects of hawthorn cell suspensions, fresh fruits, and medicinal dried parts. Food Chemistry, 115, 897−903. https://doi.org/10.1016/j. foodchem.2009.01.004

  12. Galili, S, & Hovav, R. (2014). Determination of polyphenols, flavonoids, and antioxidant capacity in dry seeds. En: Polyphenols in Plants. R. R. Watson (ed.), pp: 305−323. Academic Press. London, UK.

  13. García-Mateos, R., Aguilar-Santelises, L., Soto-Hernández, M., Nieto-Ángel, R. & Kite, G. (2012). Total phenolic compounds, flavonoids and antioxidant activity in the flowers of Crataegus spp. from México. Agrociencia, 46, 651−662.

  14. Grigelmo-Miguel, N., Rojas-Grau, M. A., Soliva-Fortuny, R. & Martin-Belloso, O. (2009). Methods of analysis of antioxidant capacity of phytochemicals. En: Fruit and Vegetable Phytochemicals: Chemistry, Nutritional Value, and Stability. L. A. de la Rosa, E. Álvarez‐Parrilla & G. A. González‐Aguilar (eds.), pp: 271−307. Wiley-Blackwell, USA.

  15. Gundogdu, M., Ozrenk, K., Ercisli, S., Kan, T., Kodad, O. & Hegedus, A. (2014). Organic acids, sugars, vitamin C content and some pomological characteristics of eleven hawthorn species (Crataegus spp.) from Turkey. Biological Research, 47, 1−5. http://dx.doi.org/10.1186/0717-6287-47-21

  16. Kirakosyan, A., Seymour, E., Kaufman, P. B., Warber, S., Bolling, S. & Chang, S. C. (2003). Antioxidant capacity of polyphenolic extracts from leaves of Crataegus laevigata and Crataegus monogyna (hawthorn) subjected to drought and cold stress. Journal of Agriculture and Food Chemistry, 51, 3973−3976. https://doi.org/10.1021/jf030096r

  17. Koffi, E., Sea, T., Dodehe, Y. & Soro S. (2010). Effect of solvent type on extraction of polyphenols from twenty three Ivorian plants. Journal of Animal and Plant Sciences, 5, 550−558.

  18. Liu P, Kallio, H., Lu, D., Zhou, C. & Yang, B. (2011). Quantitative analysis of phenolic compounds in Chinese hawthorn (Crataegus spp.) fruits by high performance liquid chromatography– electrospray ionisation mass spectrometry. Food Chemistry, 127, 1370−1377. https:// doi.org/10.1016/j.foodchem.2011.01.103

  19. Lozano-Grande, M. A., Valle-Guadarrama, S., Aguirre- Mandujano, E., Lobato-Calleros, C. S. O. & Huelitl-Palacios, F. (2016). Films based on hawthorn (Crataegus spp.) fruit pectin and candelilla wax emulsions: characterization and application on Pleurotus ostreatus. Agrociencia, 50, 849−866.

  20. Malar, D. S., Suryanarayanan, V., Prasanth, M. I., Singh, S. K., Balamurugan, K. & Devi, K. P. (2018). Vitexin inhibits Aβ 25-35 induced toxicity in Neuro-2a cells by augmenting Nrf- 2/HO-1 dependent antioxidant pathway and regulating lipid homeostasis by the activation of LXR-α. Toxicology in Vitro, 50, 160−171. https://doi.org/10.1016/j.tiv.2018.03.003

  21. Martínez-Flórez, S., González-Gallego, J., Culebras, J. & Tuñón, J. (2002). Los flavonoides: propiedades y acciones antioxidantes. Nutrición Hospitalaria, 17, 271−278.

  22. Miao, J., Li, X., Fan, Y., Zhao, C., Mao, X., Chen, X., Huang, H. & Gao, W. (2016). Effect of different solvents on the chemical composition, antioxidant activity and alphaglucosidase inhibitory activity of hawthorn extracts. International Journal of Food Science & Technology, 51, 1244−1251. https://doi.org/10.1111/ijfs.13076

  23. Molyneux, P. (2004). The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26, 211−219.

  24. Mraihi, F., Journi, M., Chérif, J. K., Sokmen, M., Sokmen, A. & Trabelsi-Ayadi, M. (2013). Phenolic contents and antioxidant potential of Crataegus fruits grown in Tunisia as determined by DPPH, FRAP, and β -carotene/linoleic acid assay. Journal of Chemistry, Article ID 378264, 6 pp.

  25. Nieto, Á. & Borys, M. W. (1993). El tejocote (Crataegus spp.); un potencial frutícola para la producción de las zonas templadas y frías. Fruticultura Profesional, 54, 64−71.

  26. Núñez-Colín, C. A., Nieto-Ángel, R., Barrientos-Priego, A. F., Segura, S., Sahagún-Castellanos, J. & Gonzáles-Andrés, F. (2008). Distribución y caracterización eco-climática del género Crataegus L. (Rosaceae, SUBFAM. Maloideae) en México. Revista Chapingo Serie Horticultura, 14, 177−184. DOI: 10.5154/r.rchsh.2006.06.027

  27. Oliveira, J., Mateus, N. & de Freitas V. (2013). Flavanols: catechins and proanthocyanidins. En: Natural Products. K. G Ramawat. & J.-M. Mérillon (eds.), pp. 1753–1801. Springer. Berlin, Germany.

  28. Ongkowijoyo, P., Luna-Vital, D. A. & Gonzalez, E. (2018). Extraction techniques and analysis of anthocyanins from food sources by mass spectrometry: An update. Food Chemistry, 250, 113−126. https://doi.org/10.1016/j. foodchem.2018.01.055

  29. Pasqualone, A., Laddomada, B., Spina, A., Todaro, A., Guzmán, C., Summo, C., Mita, G. & Giannone, V. (2018). Almond by-products: Extraction and characterization of phenolic compounds and evaluation of their potential use in composite dough with wheat flour. LWT-Food Science and Technology, 89, 299−306. https://doi.org/10.1016/j. lwt.2017.10.066

  30. Pérez-Jiménez, J., Díaz-Rubio, M. E. & Saura-Calixto, F. (2014). Non-extractable polyphenols in plant foods: nature, isolation, and analysis. En: Polyphenols in Plants. R. R. Watson (ed.), pp: 203−218. Academic Press. London, UK.

  31. Phipps, J. B. (1997). Monograph of northern Mexican Crataegus (Rosaceae, subfam. Maloideae). Botanical Research Institute of Texas, USA.

  32. Quiroz-Reyes, C. N. & Fogliano, V. (2018). Design cocoa processing towards healthy cocoa products: The role of phenolics and melanoidins. Journal of Functional Foods, 45, 480−490. https://doi.org/10.1016/j.jff.2018.04.031

  33. Quiroz-Reyes, C. N., Ronquillo-de Jesús, E., Aguilar-Méndez, M. A. & Ramírez-Ortíz, M. E. (2013). Comparative study of ultrasound and maceration techniques for the extraction of polyphenols from cocoa beans (Theobroma cacao L.). Revista Mexicana de Ingeniería Quimica, 12, 11−18.

  34. Rabiei, K., Bekhradnia, S., Nabavi, S. M., Nabavi, S. F, & Ebrahimzadeh, M. A. (2012). Antioxidant activity of polyphenol and ultrasonic extracts from fruits of Crataegus pentagyna subsp. elburensis. Natural Product Research, 26, 2353−2357. https://doi.org/10.1080/14786419.2012 .658799

  35. Refaat, A. T., Shahat, A. A., Ehsan, N. A., Yassin, N., Hammouda, F., Tabl, E. A. & Ismail, S. I. (2010). Phytochemical and biological activities of Crataegus sinaica growing in Egypt. Asian Pacific Journal of Tropical Medicine, 3, 257−261. https://doi.org/10.1016/S1995-7645(10)60062-4

  36. Reyes-Becerril, M., Martínez-Preciado, A., Guluarte, C., Guerra, K., Tovar-Ramírez, D., Macías, M. E. & Angulo, C. (2019). Phytochemical composition and immunobiological activity of hawthorn Crataegus mexicana nanoencapsulated in longfin yellowtail seriola rivoliana leukocytes. Fish and Shellfish Immunology, 92, 308−314. DOI: 10.1016/j. fsi.2019.06.024

  37. Rigelsky, J. M. & Sweet, B. V. (2002). Hawthorn: pharmacology and therapeutic uses. American Journal of Health- System Pharmacy, 59, 417−422. https://doi.org/10.1093/ ajhp/59.5.417

  38. Salmanian, S., Sadeghi, A. R., Alami, M. & Ghorbani, M. (2014). Phenolic content, antiradical, antioxidant, and antibacterial properties of Hawthorn (Crataegus elburensis) seed and pulp. Journal of Agricultural Science and Technology, 16, 343−354.

  39. Soko´ł-Łetowska, A., Oszmianski, J. & Wojdyło, A. (2007). Antioxidant activity of the phenolic compounds of hawthorn, pine and skullcap. Food Chemistry, 103, 853−859. https://doi.org/10.1016/j.foodchem.2006.09.036

  40. Vázquez-Flores, A. A., Álvarez-Parrilla, E., López-Díaz, J. A., Wall-Medrano, A. & de la Rosa L. A. (2012). Taninos hidrolizables y condensados: naturaleza química, ventajas y desventajas de su consumo. Tecnociencia, VI, 84−93.

  41. Velickovic, J. M., Ilic, S., Mitic, S. S., Mitic, M. N. & Kostic, D. A. (2016). Comparative analysis of phenolic and mineral composition of hawthorn and blackthorn from southeast Serbia. Oxidation Communications, 39, 2280−2290.

  42. Vermerris, W. & Nicholson, R. (2009). Phenolic Compound Biochemistry. Springer. The Netherlands.

  43. Wyspiańska, D., Kucharska, A. Z., Sokół-Łętowska, A. & Kolniak-Ostek, J. (2017). Physico-chemical, antioxidant, and anti-inflammatory properties and stability of hawthorn (Crataegus monogyna Jacq.) procyanidins microcapsules with inulin and maltodextrin. Journal of the Science of Food and Agriculture, 97, 669−678. DOI: 10.1002/jsfa.7787

  44. Yang, B. & Liu P. (2012). Composition and health effects of phenolic compounds in hawthorn (Crataegus spp.) of different origins. Journal of the Science of Food and Agriculture, 92, 1578−1590. DOI: 10.1002/jsfa.5671

  45. Yilmaz, Y. & Toledo, R. T. (2006). Oxygen radical absorbance capacities of grape/wine industry byproducts and effect of solvent type on extraction of grape seed polyphenols. Journal of Food Composition and Analysis, 19, 41−48. https://doi.org/10.1016/j.jfca.2004.10.009




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2020;23