medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2020; 23 (1)

Analysis of the c.187 C› T mutation in ATP6V0A2 by PCR-ARMS

González-Domínguez CA, López-Valdez J, Martínez-Duncker RI, Salinas-Marín R
Full text How to cite this article

Language: Spanish
References: 23
Page: 1-9
PDF size: 759.11 Kb.


Key words:

CDG, cutis laxa, ATP6V0A2, ARCL2A, PCR-ARMS.

ABSTRACT

Congenital disorders of glycosylation (CDG) are rare hereditary metabolic diseases (EPOF) that occur as a result of mutations in the genes coding for proteins involved direct or indirectly in this process. Autosomal Recessive Cutis Laxa disease type II-A (ARCL2A) is a type of CDG (ATP6V0A2-CDG) caused by mutations in ATP6V0A2, which codes for the a2 subunit of the v0 domain of a vacuolar ATPase that has the function of transporting H+ through cell membranes, regulating pH in cells compartments, including Golgi acidification. In 2014, our research group reported the first two cases of ATP6V0A2-CDG in Mexico. In this work, a methodology was established to identify carriers of the c.187 C› T mutation in ATP6V0A2 by PCR-ARMS.


REFERENCES

  1. Ahlawat, S., Sharma, R., Maitra, A., Roy, M. & Tantia, M. S. (2014). Designing, optimization and validation of tetraprimer ARMS PCR protocol for genotyping mutations in caprine Fec genes. Meta Gene, 2, 439–449. DOI: 10.1016/j. mgene.2014.05.004

  2. Angelini, C., Thibaud, M., Aladjidi, N., Bessou, P., Cabasson, S., Colson, C., Espil-Taris, C., Goizet, C., Husson, M., Morice-Picard, F., De Sandre-Giovannoli, A. & Pédespan, J. M. (2020). Expanding the Spectrum of Neurological Manifestations in Cutis Laxa, Autosomal Recessive, Type IIIA. Neuropediatrics, 51(4), 245–250. DOI: 10.1055/s- 0040-1701671

  3. Bahena-Bahena, D., López-Valdez, J., Raymond, K., Salinas- Marín, R., Ortega-García, A., Ng, B. G., Freeze, H. H, Ruíz-García, M. & Martínez-Duncker, I. (2014). ATP6V0A2 mutations present in two Mexican Mestizo children with an autosomal recessive cutis laxa syndrome type IIA. Molecular Genetics and Metabolism Reports, 1, 203-212. DOI:10.1016/j.ymgmr.2014.04.003.

  4. Beyens, A., Moreno-Artero, E., Bodemer, C., Cox, H., Gezdirici, A., Yilmaz Gulec, E., Kahloul, N., Khau Van Kien, P., Ogur, G., Harroche, A., Vasse, M., Salhi, A., Symoens, S., Hadj- Rabia, S. & Callewaert, B. (2019). ATP6V0A2-related cutis laxa in 10 novel patients: Focus on clinical variability and expansion of the phenotype. Experimental dermatology, 28(10), 1142–1145. DOI: 10.1111/exd.13723

  5. Casey, J. R., Grinstein, S. & Orlowski, J. (2010). Sensors and regulators of intracellular pH. Nature Reviews Molecular Cell Biology, 11(1), 50–61. DOI: 10.1038/nrm2820

  6. Doulabi, M., Moghaddam, R. G. & Salehzadeh, A. (2020). Associations between an MDM2 gene polymorphism and ulcerative colitis by ARMS-PCR. Genomics & informatics, 18(1), e9. DOI: 10.5808/GI.2020.18.1.e9

  7. El Ouali, A., Azizi, M., Dikhaye, S. & Benajiba, N. (2019). Cutis laxa congénital: à propos d’un cas [Congenital cutis laxa: a case study]. The Pan African medical journal, 34, 195. DOI: 10.11604/pamj.2019.34.195.17110

  8. Fischer, B., Dimopoulou, A., Egerer, J., Gardeitchik, T., Kidd, A., Jost, D., Kayserili, H., Alanay, Y., Tantcheva-Poor, I., Mangold, E., Daumer-Haas, C., Phadke, S., Peirano, R. I., Heusel, J., Desphande, C., Gupta, N., Nanda, A., Felix, E., Berry-Kravis, E., Kabra, M. & Kornak, U. (2012). Further characterization of ATP6V0A2-related autosomal recessive cutis laxa. Human genetics, 131(11), 1761–1773. DOI: 10.1007/s00439-012-1197-8

  9. Guillard, M., Dimopoulou, A., Fischer, B., Morava, E., Lefeber, D. J., Kornak, U. & Wevers, R. A. (2009). Vacuolar H+- ATPase meets glycosylation in patients with cutis laxa. Biochimica et biophysica acta, 1792(9), 903–914. DOI: 10.1016/j.bbadis.2008.12.009

  10. Jefferies, K. C., Cipriano, D. J. & Forgac, M. (2008). Function, structure and regulation of the vacuolar (H+)-ATPases. Archives of biochemistry and biophysics, 476(1), 33–42. DOI: 10.1016/j.abb.2008.03.025

  11. Li, C., He, Q., Liang, H., Cheng, B., Li, J., Xiong, S., Zhao, Y., Guo, M., Liu, Z., He, J. & Liang, W. (2020). Diagnostic Accuracy of Droplet Digital PCR and Amplification Refractory Mutation System PCR for Detecting EGFR Mutation in Cell-Free DNA of Lung Cancer: A Meta- Analysis. Frontiers in oncology, 10, 290. DOI: 10.3389/ fonc.2020.00290

  12. Medrano, R. F. & De Oliveira, C. A. (2014). Guidelines for the tetra-primer ARMS-PCR technique development. Molecular biotechnology, 56(7), 599–608. DOI: 10.1007/ s12033-014-9734-4

  13. Morales, A. M., Marinne, S., Dovala, R., Cedillos, C. A. M., Bahena, M. T., Cortés, E. R. & Herrera, A. V. (2011). Síndrome de cutis laxa. Dermatología Cosmética, Médica y Quirúrgica, 9(1), 29–34.

  14. Morava, E., Wopereis, S., Coucke, P., Gillessen-Kaesbach, G., Voit, T., Smeitink, J., Wevers, R. & Grünewald, S. (2005). Defective protein glycosylation in patients with cutis laxa syndrome. European journal of human genetics: EJHG, 13(4), 414–421. DOI: 10.1038/sj.ejhg.5201361

  15. Ng, B. G. & Freeze, H. H. (2018). Perspectives on Glycosylation and Its Congenital Disorders. Trends in genetics: TIG, 34(6), 466–476. DOI: 10.1016/j.tig.2018.03.002

  16. Ohtsubo, K. & Marth, J. D. (2006). Glycosylation in Cellular Mechanisms of Health and Disease. Cell, 126(5), 855–867. https://doi.org/10.1016/j.cell.2006.08.019

  17. Rath, A. (2020). Orphanet Versión 5.40.0. Orphanet. INSERM US14. Paris, France. Available at: https://www.orpha.net/ consor/cgi-bin/OC_Exp.php?Lng=ES&Expert=209.

  18. Rosnoblet, C., Peanne, R., Legrand, D. & Foulquier, F. (2013). Glycosylation disorders of membrane trafficking. Glycoconjugate journal, 30(1), 23–31. DOI: 10.1007/ s10719-012-9389-y

  19. Saste, S. R., Ghalsasi, P. M., Kataria, R. S., Joshi, B. K., Mishra, B. P. & Nimbkar, C. (2012). ARMS-PCR as an alternative, cost effective method for detection of fecb genotype in sheep. Indian Journal of Biotechnology, 11(3), 274–279.

  20. Varki, A., Cummings, R. D., Esko, J. D., Stanley, P., Hart, G. W., Aebi, M. & Seeberger, P. H. (2017). Essentials of glycobiology, third edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 823. DOI: 10.1016/ S0962-8924(00)01855-9

  21. Zhang, P., Wang, X., Gao, Z., Liu, X. & Chen, Q. (2018). Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chinese journal of medical genetics, 35(1), 100–103. DOI: 10.3760/cma.j.is sn.1003-9406.2018.01.023

  22. Zhang, R., Tan, Y., Jian, H., Qu, S., Liu, Y., Zhu, J., Wang, L., Lv, M., Liao, M., Zhang, L., Yang, F. & Liang, W. (2020), A new approach to detect a set of SNP‐SNP markers: Combining ARMS‐PCR with SNaPshot technology. Electrophoresis, 41, 1189-1197. DOI:10.1002/elps.202000009

  23. Zhang, S., Cai, Y., Zhang, J., Liu, X., He, L., Cheng, L. & Cui, Y. (2020). Tetra-primer ARMS-PCR combined with GoldMag lateral flow assay for genotyping: simultaneous visual detection of both alleles. Nanoscale, 12(18), 10098–10105. DOI: 10.1039/d0nr00360c




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2020;23