medigraphic.com
SPANISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 1

<< Back Next >>

salud publica mex 2021; 63 (1)

Rapid review of the effects of temperature and humidity variation on the Covid-19 morbidity and mortality

Hurtado-Díaz M, Cruz CJ, Blanco-Muñoz J, Azamar-Arizmendi RA, Riojas-Rodríguez H
Full text How to cite this article

Language: Spanish
References: 46
Page: 120-125
PDF size: 255.48 Kb.


Key words:

rapid review, temperature, humidity, Covid-19.

ABSTRACT

Objective. To summarize and analyze the evidence of the association between Covid-19 and climatic factors. Materials and methods. We used the Cochrane rapid review methodology. An academic database and preprints were examined with the searches restricted from January 1 to April 27. Titles and abstracts were reviewed by two researchers and full texts were reviewed by the five authors. Results. We identified 354 articles, 26 met the established eligibility criteria. Of these, 20 reported an inverse association. When evaluating their quality, nine were qualified with moderate validity, this is because they adjusted for covariates in the analysis, but they are ecological studies. Conclusions. Despite homogeneity of results, climatic factors explained a small percentage of Covid-19 incidence variability. Future studies need to include individual risk factors and longer period of data to capture trend or seasonality.


REFERENCES

  1. Raj K, Rohit S, Ghosh A, Singh S. Coronavirus as silent killer: recent advancement to pathogenesis, therapeutic strategy and future perspectives. Virus- Disease. 2020;31(2):137-45. https://doi.org/10.1007/s13337-020-00580-4

  2. Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J. 2020;55(4):1-3. https://doi.org/10.1183/13993003.00607-2020

  3. Zheng J. SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat. Int J Biol Sci. 2020;16(10):1678-85. https://doi.org/10.7150/ ijbs.45053

  4. Neher RA, Dyrdak R, Druelle V, Hodcroft EB, Albert J. Potential impact of seasonal forcing on a SARS-CoV-2 pandemic. Swiss Med Wkly. 2020;150:w20224. https://doi.org/10.4414/smw.2020.20224

  5. Riojas-Rodríguez H. ANEXO I. Artículos poblacionales incluidos en la revisión rápida. México 2020. Harvard Dataverse. 2020. https://doi. org/10.7910/DVN/DIWMNB

  6. Qi H, Xiao S, Shi R, Ward MP, Chen Y, Tu W, et al. COVID-19 transmission in Mainland China is associated with temperature and humidity: A time-series analysis. Sci Total Environ. 2020;728:138778. https://doi. org/10.1016/j.scitotenv.2020.138778

  7. Yao Y, Pan J, Liu Z, Meng X, Wang W, Kan H, et al. No association of COVID-19 transmission with temperature or UV radiation in Chinese cities. Eur Respir J. 2020;55(5):2000517. https://doi. org/10.1183/13993003.00517-2020

  8. Tosepu R, Gunawan J, Effendy DS, Ahmad LOAI, Lestari H, Bahar H, et al. Correlation between weather and Covid-19 pandemic in Jakarta, Indonesia. Sci Total Environ. 2020;725:138436. https://doi.org/10.1016/j. scitotenv.2020.138436

  9. Bannister-Tyrrell M, Meyer A, Faverjon C, Cameron A. Preliminary evidence that higher temperatures are associated with lower incidence of COVID-19, for cases reported globally up to 29th February 2020. MedRxiv [preprint]. 2020. https://doi.org/10.1101/2020.03.18.20036731

  10. Carleton T, Meng KC. Causal empirical estimates suggest COVID-19 transmission rates are highly seasonal. MedRxiv [preprint]. 2020. https:// doi.org/10.1101/2020.03.26.20044420

  11. Chiyomaru K, Takemoto K. Global COVID-19 transmission rate is influenced by precipitation seasonality and the speed of climate temperature warming. MedRxiv [preprint]. 2020. https://doi. org/10.1101/2020.04.10.20060459

  12. Ficetola GF, Rubolini D. Climate affects global patterns of COVID- 19 early outbreak dynamics. MedRxiv [preprint]. 2020. https://doi. org/10.1101/2020.03.23.20040501

  13. Islam N, Shabnam S, Erzurumluoglu AM. Temperature, humidity, and wind speed are associated with lower Covid-19 incidence. MedRxiv [preprint]. 2020. https://doi.org/10.1101/2020.03.27.20045658

  14. Ma Y, Zhao Y, Liu J, He X, Wang B, Fu S, et al. Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Sci Total Environ. 2020;724:138226. https://doi.org/10.1016/j.scitotenv.2020.138226

  15. Rodrigues W, Prata DN, Camargo W. Regional Determinants of the Expansion of Covid-19 in Brazil. MedRxiv [preprint]. 2020. https://doi. org/10.1101/2020.04.13.20063925

  16. Coelho MTP, Rodrigues JFM, Medina AM, Scalco P, Terribile LC, Vilela B, et al. Exponential phase of covid19 expansion is not driven by climate at global scale. MedRxiv [preprint]. 2020. https://doi. org/10.1101/2020.04.02.20050773

  17. Shi P, Dong Y, Yan H, Li X, Zhao C, Liu W, et al. The impact of temperature and absolute humidity on the coronavirus disease 2019 (COVID-19) outbreak - evidence from China. MedRxiv [preprint]. 2020. https://doi. org/10.1101/2020.03.22.20038919

  18. Byass P. Eco-epidemiological assessment of the COVID-19 epidemic in China, January-February 2020. Glob Health Action. 2020;13(1):1760490. https://doi.org/10.1080/16549716.2020.1760490

  19. Caspi G, Shalit U, Kristensen SL, Aronson D, Caspi L, Rossenberg O, et al. Climate effect on COVID-19 spread rate: an online surveillance tool. MedRxiv [preprint]. 2020. https://doi.org/10.1101/2020.03.26.20044727

  20. Chen B, Liang H, Yuan X, Hu Y, Xu M, Zhao Y, et al. Roles of meteorological conditions in COVID-19 transmission on a worldwide scale. MedRxiv [preprint]. 2020. https://doi.org/10.1101/2020.03.16.20037168

  21. Jamil T, Alam IS, Gojobori T, Duarte C. No Evidence for Temperature- Dependence of the COVID-19 Epidemic. MedRxiv [preprint]. 2020. https://doi.org/10.1101/2020.03.29.20046706

  22. Kassem AZE. Do Weather Temperature and Median-age affect COVID-19 Transmission? MedRxiv [preprint]. 2020. https://doi. org/10.1101/2020.04.16.20067355

  23. Luo W, Majumder MS, Liu D, Poirier C, Mandl KD, Lipsitch M, et al. The role of absolute humidity on transmission rates of the COVID-19 outbreak. MedRxiv [preprint]. 2020. https://doi. org/10.1101/2020.02.12.20022467

  24. Notari A. Temperature dependence of COVID-19 transmission. MedRxiv [preprint]. 2020. https://doi.org/10.1101/2020.03.26.20044529

  25. Triplett M. Evidence that higher temperatures are associated with lower incidence of COVID-19 in pandemic state, cumulative cases reported up to March 27, 2020. MedRxiv [preprint]. 2020. https://doi. org/10.1101/2020.04.02.20051524

  26. Wang M, Jiang A, Gong L, Luo L, Guo W, Li C, et al. Temperature significant change COVID-19 Transmission in 429 cities. MedRxiv [preprint]. 2020. https://doi.org/10.1101/2020.02.22.20025791

  27. Alvarez-Ramirez J, Meraz M. Role of meteorological temperature and relative humidity in the January-February 2020 propagation of 2019-nCoV in Wuhan, China. MedRxiv [preprint]. 2020. https://doi. org/10.1101/2020.03.19.20039164

  28. Bu J, Peng DD, Xiao H, Yue Q, Han Y, Lin Y, et al. Analysis of meteorological conditions and prediction of epidemic trend of 2019- nCoV infection in 2020. MedRxiv [preprint]. 2020. https://doi. org/10.1101/2020.02.13.20022715

  29. Li J, Zhang L, Ren Z, Xing C, Qiao P, Chang B. Meteorological factors correlate with transmission of 2019-nCoV: Proof of incidence of novel coronavirus pneumonia in Hubei Province, China. MedRxiv [preprint]. 2020. https://doi.org/10.1101/2020.04.01.20050526

  30. Pirouz B, Golmohammadi A, Masouleh HS, Violini G, Pirouz B. Relationship between Average Daily Temperature and Average Cumulative Daily Rate of Confirmed Cases of COVID-19. MedRxiv [preprint]. 2020. https:// doi.org/10.1101/2020.04.10.20059337

  31. Pawar S, Stanam A, Chaudhari M, Rayudu D. Effects of temperature on COVID-19 transmission. MedRxiv [preprint]. 2020. https://doi. org/10.1101/2020.03.29.20044461

  32. Riojas-Rodríguez H. ANEXO II. Estudios que predicen la dispersión del SARS-CoV-2. México, 2020. Harvard Dataverse. 2020. https://doi. org/10.7910/DVN/2ZRRFB

  33. Harbert RS, Cunningham SW, Tessler M. Spatial modeling cannot currently differentiate SARS-CoV-2 coronavirus and human distributions on the basis of climate in the United States. MedRxiv [preprint]. 2020. https:// doi.org/10.1101/2020.04.08.20057281

  34. Araujo MB, Naimi B. Spread of SARS-CoV-2 Coronavirus likely to be constrained by climate. MedRxiv [preprint]. 2020. https://doi. org/10.1101/2020.03.12.20034728

  35. Baker RE, Yang W, Vecchi GA, Metcalf CJE, Grenfell BT. Susceptible supply limits the role of climate in the COVID-19 pandemic. MedRxiv [preprint]. 2020. https://doi.org/10.1101/2020.04.03.20052787

  36. Bariotakis M, Sourvinos G, Castanas E, Pirintsos SA. Climatic influences on the worldwide spread of SARS-CoV-2. MedRxiv [preprint]. 2020. https://doi.org/10.1101/2020.03.19.20038158

  37. Nickbakhsh S, Ho A, Marques DF, McMenamin J, Gunson RN, Murcia PR. Epidemiology of Seasonal Coronaviruses: Establishing the Context for the Emergence of Coronavirus Disease 2019. J Infect Dis. 2020;222(1):17- 25. https://doi.org/10.1093/infdis/jiaa185

  38. Tan J, Mu L, Huang J, Yu S, Chen B, Yin J. An initial investigation of the association between the SARS outbreak and weather: With the view of the environmental temperature and its variation. J Epidemiol Community Health. 2005;59(3):186-92. https://doi.org/10.1136/jech.2004.020180

  39. Cai QC, Lu J, Xu QF, Guo Q, Xu DZ, Sun QW, et al. Influence of meteorological factors and air pollution on the outbreak of severe acute respiratory syndrome. Public Health. 2007;121(4):258-65. https://doi. org/10.1016/j.puhe.2006.09.023

  40. Lin K, Fong DYT, Zhu B, Karlberg J. Environmental factors on the SARS epidemic: Air temperature, passage of time and multiplicative effect of hospital infection. Epidemiol Infect. 2006;134(2):223-30. https://doi. org/10.1017/S0950268805005054

  41. Gardner EG, Kelton D, Poljak Z, Van Kerkhove M, Von Dobschuetz S, Greer AL. A case-crossover analysis of the impact of weather on primary cases of Middle East respiratory syndrome. BMC Infect Dis. 2019;19:113. https://doi.org/10.1186/s12879-019-3729-5

  42. Altamimi A, Ahmed AE. Climate factors and incidence of Middle East respiratory syndrome coronavirus. J Infect Public Health. 2020;13(5):704- 8. https://doi.org/10.1016/j.jiph.2019.11.011

  43. Chan KH, Peiris JSM, Lam SY, Poon LLM, Yuen KY, Seto WH. The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus. Adv Virol. 2011;2011(734690):1-7. https://doi. org/10.1155/2011/734690

  44. van Doremalen N, Bushmaker T, Munster VJ. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Eurosurveillance. 2013;18(38):20590. https://doi. org/10.2807/1560-7917.ES2013.18.38.20590

  45. Chin AWH, Chu JTS, Perera MRA, Hui KPY, Yen HL, Chan MCW, et al. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe. 2020;1(1):e10. https://doi.org/10.1016/s2666-5247(20)30003-3

  46. Amanor-Boadu V, Ross K. COVID-19 incidence trends between April and June 2020: A global analysis. MedRxiv [preprint]. 2020. https://doi. org/10.1101/2020.07.07.20148007




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2021;63