medigraphic.com
SPANISH

Revista Biomédica

Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 2

<< Back Next >>

Rev Biomed 2021; 32 (2)

Anti-proliferative eff ect in breast and cervical-uterine cancer cell lines, caused by multi-walled carbon nanotubes - lectin of Phaseolus lunatus var. silvester Baudet

Aguilar-Vázquez J, Pina-Canseco MS, Gochi-Ponce Y, Pérez-Santiago AD
Full text How to cite this article

Language: Spanish
References: 49
Page: 87-97
PDF size: 1005.46 Kb.


Key words:

Lectin of Phaseolus lunatus, carbon nanotubes, breast cancer, uterine cervical cancer, cytotoxic effect.

ABSTRACT

Introduction. Carbon nanotubes have been conjugated with a wide range of molecules for use in medicine due to the properties they have, such as size, chemical and mechanical properties, and they can be targeted at specific sites.
Objective. To evaluate the cytotoxic eff ect of the multiple-walled carbon nanotube conjugate with lectin de Phaseolus lunatus (NTCPM-lPl) in four carcinoma cell lines (MDA MB-231, MCF-7, ViBo and HeLa).
Methods. Multiple-walled carbon nanotube (NTCPM) were purified in a mixture of concentrated acids, 1: 3 [HNO3 (70%) / H2SO4 (95-98%)] and sonicated for 4 h, the pH was adjusted to 7 and incubated with lectin of Phaseolus lunatus var. silvester (lPl) for 4 h under constant stirring at 4° C. The cytotoxic activity of IPI and the NTCPM-IPI conjugate was measured by MTT and crystal violet tests at 24, 48 and 72 h, in two carcinoma cell lines.
Results. Synchronized ViBo, MDA MB-231 and MCF-7 cells showed a reduction of 51, 53 and 47% respectively with the NTCPM-lPl conjugate, while HeLa showed a 55% reduction with lPl alone.
Conclusions. Cytotoxic activity is potentiated using the NTCPM-lPl conjugate in synchronized ViBo, MDA MB-231 and MCF-7 cells; however, for HeLa cells the eff ect is produced by lPl alone, so conjugation is unnecessary.


REFERENCES

  1. Hernández-Cruz P, Pérez-Campos E, Martínez-Martínez L, Ortiz B, Martínez G. Las lectinas vegetales como modelo de estudio de las interacciones proteínacarbohidrato. Rev Edu Bioquim; 2005 Mar; 24(1): 21- 27. https://www.redalyc.org/pdf/490/49024104. pdf

  2. Yau T, Dan X, Ala-Ng CC, Bun-Ng T. Lectins with potential for anti-cancer therapy. Molecules. 2015 Feb; 20(3): 3791–810. doi.org/10.3390/molecules20033791

  3. Yau-Sang C, Lixin-Xia, Bun-Ng T. White kidney bean lectin exerts anti-proliferative and apoptotic effects on cancer cells. Int J Biol Macromolecules. 2016 Apr; 85:335-45. doi.org/10.1016/j.ijbiomac.2015.12.094

  4. Hernández-Rivera E, Mendiola-Olaya E, Blanco-Labra A, García-Gasca T. Efecto citotóxico diferencial de una fracción rica en lectina de Frijol Tépari (Phaseolus acutifolius) sobre Células Cancerígenas. 2° Congreso Nacional de Química Médica. Facultad de Ciencias Naturales. Universidad Autónoma de Querétaro. 2002; 1-4

  5. Castillo–Villanueva A, Abdullaev F. Lectinas vegetales y sus efectos en el cáncer. Rev Invest Clín. 2005 Feb; 57(1): 55-64. http://www.scielo.org.mx/scielo.php?script=sci_ arttext&pid=S0034-83762005000100007

  6. Presanna VK, Venkatesh YP. Characterization of onion lectin (Allium cepa agglutinin) as an immunomodulatory protein, inducing Th1-type immune response in vitro. Int Immunopharmacology. 2015 Jun; 26(2): 304- 13. doi.org/10.1016/j.intimp.2015.04.009

  7. Vázquez-Luna A, Rivadeneyra-Domínguez E, Díaz- Sobad R. Lectlnas en frutas y plantas comestibles: nuevas posibilidades de interacción entre la ciencia de los alimentos y la biomedicina. CienciaUAT. 2012 Jun; 6(3): 60-66. https://www.redalyc.org/articulo. oa?id=441942927008

  8. Fang EF, Lin P, Wong JH, Tsao SW, Ng TB. A lectin with anti-HIV-1 reverse transcriptase, antitumor, and nitric oxide inducing activities from seeds of extralong autumn purple bean. J Agric Food Chem. 2010 Jan; 58(4): 2221-

  9. doi.org/10.1021/jf903964u 9. Pérez-Santiago AD. Estudio bioquímico de la lectina de Phaseolus lunatus var. silvester Baudet. Tesis para obtener el título de Maestra en Ciencias en Desarrollo Regional y Tecnológico. Instituto Tecnológico de Oaxaca. Oaxaca de Juárez. México. Agosto 1999

  10. Galbraith W, Goldstein IJ. Phytohemagglutinin of the lima bean (Phaseolus lunatus); Isolation, characterization, and interaction with type A bloodgroup substance. Biochem. 1972 Oct; 11(21): 3976–84. doi.org/10.1021/bi00771a022

  11. Montes-Fonseca SL. Aplicaciones médicas de los Nanotubos de carbón Nanovacunas, administración de fármacos y terapias génicas. Synthesis. 2008; 15: 1-5 http://www.uach.mx/extension_y_difusion/ synthesis/2009/10/05/aplicaciones_medicas_ de_los_ nanotubos_de_carbon.pdf

  12. He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham- Huy P. Carbon nanotubes: applications in pharmacy and medicine. Biomed Res Int. 2013;2013:578290. doi. org/10.1155/2013/578290

  13. Andrade-Cuel ML, López-López LI, Sáenz Galindo A. Nanotubos de carbono: funcionalización y aplicaciones biologicas. Rev Mex Cienc Farm. 2014 Mar; 43(3): 9-18. http://www.scielo.org.mx/pdf/rmcf/v43n3/v43n3a2.pdf

  14. Chen L, Xie-H, Yu W. Functionalization methods of carbon nanotubes and its applications. In Carbon nanotubes applications on electron devices. edicion Ago 2011; 9:213-226 José Mauricio Marulanda, IntechOpen. doi.org/10.5772/18547

  15. Departamento de Botánica, Instituto de Biología (IBUNAM), Phaseolus lunatus var. silvester Baudet, ejemplar de: Herbario Nacional de México (MEXU), Plantas Vasculares. En Portal de datos abiertos UNAM (en línea), México, Universidad Autónoma de México; http://datosabiertos.unam.mx./IBUNAM:MEXU:33373

  16. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7; 72:248-54. doi.org/10.1016/0003- 2697(76)90527-3

  17. Aragón OF, Mentele F, Auerswald EA. Amino acid sequence of a lectin-like protein from Lachesis muta stenophyrs venom. Toxicon. 1996 Jul; 34(7): 763-9. doi.org/10.1016/0041-0101(96)00011-6

  18. Chen RJ, Zhang Y, Wang D, Dai H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc. 2001 Apr 25;123(16):3838-9. doi.org/10.1021/ja010172b

  19. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55- 63. doi.org/10.1016/0022-1759(83)90303-4

  20. Hernández- Cruz CV. Efecto antiproliferativo, citotóxico e inductor de apoptosis del dietilditiocarbamato sódico (DDTC) en líneas celulares de cáncer cérvico uterino. Tesis Para obtener el título de Bióloga. Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Zaragoza. Mayo 2013; https://www.zaragoza. unam.mx/wp-content/Portal2015/Licenciaturas/ biologia/tesis/tesis_hernandez_cruz.pdf

  21. Nascimento KS, Cunha AI, Nascimento KS, Cavada BS, Azevedo AM, Aires-Barros MR. An overview of lectins purification strategies. J Mol Recognit. 2012 Nov; 25(11):527-41. doi.org/10.1002 / jmr.2200

  22. Mundekkad D, Sulochana P. Purification and characterization of a novel anti-proliferative lectin from Morus alba L. leaves. Protein Pept Lett. 2012 Aug; 19(8):839-45. doi.org/10.2174/092986612801619516

  23. He XM, Ji N, Xiang XC, Luo P, Bao JK. Purification, characterization, and molecular cloning of a novel antifungal lectin from the roots of Ophioglossum pedunculosum. Appl Biochem Biotechnol. 2011 Dec; 165(7-8):1458-72. doi.org/10.1007/s12010-011-9367-z

  24. Ang, A.S.W., Cheung, R.C.F., Dan, X. et al. Purification and characterization of a glucosamine-binding antifungal lectin from Phaseolus vulgaris cv. chinese pinto beans with antiproliferative activity towards nasopharyngeal carcinoma cells. Appl Biochem Biotechnol. 2014 Jan; 172(2):672-86. doi.org/10.1007/s12010-013-0542-2

  25. Wong JH, Wan CT, Ng BT. Characterization of a haemagglutinin from Hokkaido red bean (Phaseolus vulgaris cv. Hokkaido red bean). J Sci Food Agric. 2010 Jan 15; 90(1):70-7. doi.org/10.1002/jsfa.3782

  26. Sharma A, Ng TB, Wong JH, Lin P. Purification and characterization of a lectin from Phaseolus vulgaris cv. (Anasazi beans). J Biomed Biotechnol. 2009;2009:929568. doi.org/10.1155/2009/929568

  27. Shan-Chan Y, Xia L, Bun-Ng T. White kidney bean lectin exerts anti-proliferative and apoptotic effects on cancer cells. Int J Biol Macromol. 2016 Apr; 85:335-45. doi.org/10.1016/j.ijbiomac.2015.12.094

  28. Vázquez-Ortiz G, Piña-Sánchez P, Hidalgo A, Lazos M, Moreno J, et al., Análisis de expresión global del cáncer cérvico uterino: rutas metabólicas y genes alterados. Rev Inv Clin. 2005 Jun; 57(3):434-41 http:// www.scielo.org. mx/pdf/ric/v57n3a7.pdf

  29. López-Naranji F, Ávila- Álvarez EP, Guadarrama-Flores B, et al., Estudio de las células cancerosas y su activación celular en el cáncer de mama. Rev Edu Bioquim. 2018 Nov; 37(4):100-110. http://www.facmed.unam.mx/ publicaciones/ampb/numeros/2018/04/REB37(4) Dic2018.pdf

  30. Poiroux G, Barre A, Van Damme EJM, Benoist H, Rougé P. Plant lectins targeting O-glycans at the cell surface as tools for cancer diagnosis, prognosis and therapy. Int J Mol Sci. 2017 Jun 9;18(6):1232. doi.org/10.3390/ ijms18061232

  31. Hakomori S. Aberrant Glycosylation in tumors and tumor-associated carbohydrate antigens. Adv Cancer Res. 1989; 52:257-331. doi.org/10.1016/s0065- 230x(08)60215-8

  32. Gallegos-Velasco BI, Coutiño R, Martínez G, Hernández-Cruz P. Marcadores glicosilados en cáncer de mama. Rev Edu Bioquim. 2008 Feb; 27(2):52-59 http://www.facmed.unam.mx/publicaciones/ampb/ numeros/2008/02/f_2Articulo.pdf

  33. Gallegos-Velasco BI, Cuevas B, Pérez-Campos E, Coutiño R, Hernández-Cruz P. El papel de la Gelectina-3 en el desarrollo del cáncer de mama. Rev Edu Bioquim. 2013 Mar; 32(1): 3-12. http://www. scielo.org.mx/scielo.php?script=sci_arttext&pid =S1665-19952013000100002

  34. Jeyaprakash AA, Katiyar S, Swaminathan CP, Sekar K, Surolia A, Vijayan M. Structural basis of the carbohydrate specificities of Jacalin: an X-ray and modeling study. J Mol Biol. 2003 Sep 5;332(1):217-28. doi.org/10.1016/ S0022-2836(03)00901-X

  35. Wu J, Wang J, Wang S, Rao P. Lunatin, a novel lectin with antifungal and antiproliferative bioactivities from Phaseolus lunatus billb. Int J Biol Macromol. 2016 Aug; 89:717-24. doi.org/10.1016/j.ijbiomac.2016.04.092

  36. E Lacerda RR, do Nascimento ES, de Lacerda JT, Pinto LD, Rizzi C, Bezerra MM, Pinto IR. et al. Lectin from seeds of a Brazilian lima bean variety (Phaseolus lunatus L. var. cascavel) presents antioxidant, antitumour and gastroprotective activities. Int J Biol Macromol. 2017 Feb; 95:1072-81. doi.org/10.1016/j.ijbiomac.2016.10.097

  37. Chan YS, Wong JH, Ng TB. A glucuronic acid binding leguminous lectin with mitogenic activity toward mouse splenocytes. Protein Pept Lett. 2011 Feb;18(2):194-202. doi.org/10.2174/092986611794475110

  38. Vásquez-Calleja MA. Preparación de películas biopoliméricas con la lectina de Phaseolus lunatus var. Silvester Baudet. Tesis para obtener el título de maestro en ciencias en desarrollo regional y tecnológico. Instituto Tecnológico de Oaxaca. Diciembre 2016

  39. Hernández-Díaz P, Martín-González O, Rodríguez de Pablos-Vélez Y, Ganem-Báez FA. Aplicaciones de las lectinas. Rev Cubana Hematol Inmunol Hemoter. 1999; 15(2) http://scielo.sld.cu/scielo.php?script=sci_arttext& pid=S0864-02891999000200002

  40. Flores-Carlos LF. Funcionalización de nanotubos de carbono con lectina de Phaseolus lunatus var. Silvester para su aplicación biológica. Tesis para obtener el título de Licenciada en Ingeniería Química. Instituto Tecnológico de Oaxaca. Noviembre 2017

  41. Vardharajula S, Ali SZ, Tiwari PM, Eroğlu E, Vig K, Dennis VA, Singh SR. Functionalized carbon nanotubes: biomedical applications. Int J Nanomedicine. 2012; 7:5361-74. doi.org/10.2147/IJN.S35832

  42. Pastorin G, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes: Towards the delivery of therapeutic molecules. J Biomed Nanotec. 2005; 1(2): 1-10 https://www.nanomedicinelab.com/wp-content/ uploads/2012/03/8thslide05.pdf

  43. Shi-Kam NW, Jessop TC, Wender PA, Dai H. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells. J Am Chem Soc. 2004 Jun 9;126(22):6850-1. doi.org/10.1021/ ja0486059

  44. Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun (Camb). 2004 Jan 7;(1):16- 7. doi.org/10.1039/b311254c

  45. Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM. A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomedicine. 2011;6:2963- 79. doi.org/10.2147 / IJN.S16923

  46. Śliwka L, Wiktorska K, Suchocki P, Milczarek M, Mielczarek S, Lubelska K, et al. The Comparison of MTT and CVS Assays for the Assessment of Anticancer Agent Interactions. PLoS One. 2016 May 19;11(5):e0155772. doi.org/10.1371/journal.pone.0155772

  47. Madani SY, Tan A, Dwek M, Seifalian AM. Functionalization of single-walled carbon nanotubes and their binding to cancer cells. Int J Nanomedicine. 2012; 7:905-14. doi.org/10.2147/IJN.S25035

  48. Xue Y, Bao L, Xiao X, Ding L, Lei J, Ju H. Noncovalent functionalization of carbon nanotubes with lectin for label-free dynamic monitoring of cell-surface glycan expression. Anal Biochem. 2011 Mar 1;410(1):92-7. doi. org/10.1016/j.ab.2010.11.019

  49. Kavosi A, Ghale-Noei SH, Madani S, Khalighfard S, Khodayari S, Khodayari H, et al. he toxicity and therapeutic effects of single-and multi-wall carbon nanotubes on mice breast cancer. Sci Rep 8, 8375 (2018). doi.org/10.1038/s41598-018-26790-x




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Biomed. 2021;32