Entrar/Registro  
HOME SPANISH
 
Veterinaria México
   
MENU

Contents by Year, Volume and Issue

Table of Contents

General Information

Instructions for Authors

Message to Editor

Editorial Board






>Journals >Veterinaria México >Year 2004, Issue 1


Hernández CJ, Zarco QL, Kindahl H, Valencia MJ
Follicular development, concentrations of FSH, estradiol and MPGF2 associated with luteal persistence induced by the administration of steroid-free equine follicular fluid in the ewe
Vet Mex 2004; 35 (1)

Language: English/Spanish
References: 64
Page: 55-64
PDF: 448.58 Kb.


Full text




ABSTRACT

The administration of steroid-free equine follicular fluid (EFF) on follicular development, FSH, estradiol, MPGF2 and length of the cycle was evaluated during diestrus in ewes. Forty one previously synchronized ewes were used. Two groups were formed on day 11 of the oestrous cycle: Group EFF (n= 24) received 3 ml of EFF iv every 8 h until the next oestrus. The control group (n= 17) received 3 ml iv of saline solution every 8 h until oestrus. Progesterone levels were determined in daily blood samples obtained during the oestrous cycle. From day 12 onwards, FSH concentration was determined in blood samples taken at 2 h intervals in 5 ewes of each group. In samples from 2 ewes of each group, levels of MPGF2 (PGF2 metabolite) were also measured. Eight ewes of the EFF group and 7 of the control group were ovariectomized on day 14, in order to measure follicular size and estradiol concentration in the aspirated follicular liquid. Luteal phase and length of the oestrous cycle were longer (P < 0.05) in the EFF group (13.5 ± 0.53 and 19.5 ± 0.66 days respectively) than in the control group (12.2 ± 0.32 and 17.7 ± 0.26 days respectively). FSH levels were lower (P < 0.05) in the EFF group than in the control one. Follicular size and estradiol were lower in the EFF group (2.62 ± 0.14 mm; 4.35 ± 2.3 ng/ml) than in the control one (3.42 ± 0.20 mm; 34.8 ± 12.15 ng/ml). Ewes in the control group showed 5 MPGF2 pulses at 8 ± 3.2 h intervals from day 15 to 17, whereas one EFF ewe presented 5 pulses between days 14 to 17 at 14 ± 2.3 h, intervals and the other EFF ewe had 4 pulses from day 14 to 20 at 22 ± 12 h intervals. It is concluded that EFF reduced FSH secretion that caused the presence of small follicles and lower estradiol concentrations that lengthened the luteal phase, probably through changes in the pattern of PGF2 secretion.


Key words: Equine follicular fluid, luteal persistence, luteolysis.


REFERENCIAS

  1. Stephano HA, Ramírez TC, Gay GM, Maqueda JJ. Estudios de un brote de encefalitis en lechones por un virus hemaglutinante. Memorias del XVII Congreso de la Asociación de Médico Veterinarios Especialistas en Cerdos; 1981, Puerto Vallarta, México. 1981:43.

  2. Stephano A, Gay G, Ramírez T. Encephalomyelitis, reproductive failure and corneal opacity (blue eye) in pigs, associate with a paramixovirus infection. Vet Rec 1988;122: 6-10.

  3. Moreno-López J, Correa-Girón P, Martínez A, Ericsson A. Characterization of a paramixovirus isolated from the brain of a piglet in México. Arch Virol 1986;91:221-231.

  4. Stephano A. Blue eye diseases. In: Leman AD, Straw BF, Mengeling WL, Allaire AD, Taylor DJ, editors. Porcine Diseases. Ames, Ia: Iowa State University press, 1994:237-241.

  5. Hernández J, Ramírez H, Zenteno R, Monrroy J, Reyes-Leyva J, Zenteno E. Neumonitis inducida por el rubulavirus porcino. Rev Inst Nac Enferm Resp 1997;10:250-255.

  6. Ramírez-Mendoza H, Hernández-Jaúregui P, Reyes-Leyva J, Zenteno E, Moreno-López J, Kennedy S. Lesions in the reproductive tract of boars experimental infected with porcine rubulavirus. J Comp Pathol 1997;117:237-252.

  7. Ramírez-Mendoza H. Fisiopatología del paramixovirus del Ojo Azul a nivel testicular. (tesis de doctorado). México (Distrito Federal) México: Universidad Nacional Autónoma de México, 2000. 8. Allan GM, MacNeilly F, Walker Y, Linné T, Moreno-López J, Hernández P, et al. A sequential study of experimental porcine paramyxovirus (LPMV) infection of pigs: immunostaining of cryostat sections and virus isolation. J Vet Diagn Invest 1996;8:405-413.

  8. MacNeilly F, Walker I, Allan G, Foster C, Linné T, Merza M, et al. A comparative study on the use of virus and antibody detection techniques for the diagnosis of La Piedad Michoacán paramyxovirus (LPMv) infection in pigs. J Vet Diagn Invest, 1997; 9: 3-9.

  9. Espinosa S. Evaluación de semen de verracos inoculados con el virus de la enfermedad del Ojo Azul (tesis de maestría). México (Distrito Federal) México: Universidad Nacional Autónoma de México, 2001.

  10. Rima B, Alexander BJ, Billeter MA, Collins PL, Kingsbury DW, Lipkind MA, et al. Family Paramyxoviridae, In: Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Matelli GP, et al., editors. Virus taxonomy: Classification and nomenclature of viruses. New York: Springer-Verlag, 1995:265-274.

  11. Sundqvist A, Berg M, Moreno-López J, Linné T. The hemagglutinin-neuraminidase glycoprotein of the porcine paramyxovirus LMPV: comparison with other paramyxovirus revealed the closest relationship to simian virus 5 and mumps virus. Arch Virol 1991;122:331-278.

  12. Berg M, Sundqvist A, Moreno-López J, Linné T. Identification of the porcine paramyxovirus LPMV matrix protein gene: comparative sequence análisis with other paramyxoviruses. J Gen Virol 1991;72:1045-1050.

  13. Berg M, Hjertner B, Moreno-López J, Linné T. The P gene of the porcine paramyxovirus LPMV encodes three possible polipeptides, P, V, and C; the P protein mRNA is edited. J Gen Virol 1992;73:1195-1200.

  14. Berg M, Bergvall AC, Svenda M, Sundqvist A, Moreno-López J, Linné T. Analysis of the fusion protein gene of the porcine rubulavirus LPMV: comparative analysis of paramyxoviruses F proteins. Virus Genes 1997;14:55-61.

  15. Wolinsky JS. Mumps. In: Fields BN, Knipe DM, Howley PM, editors. Fields in Virology. Filadelfia-Nueva York: Lippincott-Raven Publishers, 1996:1243-1266.

  16. Hernández J, Ramírez H, Carreón R, Mercado C, Lascuraín R, Hernández-Jaúregui P, et al. Several isolates of the Porcine Paramyxovirus can be sorted into two groups with different behavior. Memorias del III Congreso Internacional de Virología Veterinaria. Interlaken, Suiza. 1994:P1-6

  17. Sundqvist A, Berg M, Hernández-Jaúregui P, Linné T, and Moreno-López J. The structural proteins of a porcine paramyxovirus (LPMV). J Gen Virol 1990;71:609-613.

  18. Reyes-Leyva J, Hernández-Jaúregui P, Montaño L, Zenteno E. The porcine paramyxovirus LPM specifically recognize sialil (2-3) lactose-containing structures. Arch Virol 1993;133:195-200.

  19. Espinosa B, Reyes J, Hernández-Jaúregui P, Zenteno R, Ramírez H, Hernández J, et al. Carbohydrate specificity and porcine rubulavirus infectivity. In: Morilla A, Zimmerman J, Ion K, editors. Trends in Viral Emerging Diseases of Porcine. Ames, Ia:Iowa State University Press, 2002:81-85.

  20. Reyes-Leyva J, Espinosa B, Hernández J, Zenteno R, Vallejo V, Hernández-Jaúregui P, et al. E. NeuAca-2,3Gal-glycoconjugate expression determinates cell susceptibility to the porcine rubulavirus LPMV. Com Biochem Physiol 1997;118B:237-332.

  21. Vallejo V, Reyes-Leyva J, Hernández J, Ramírez H, Delannoy P, Zenteno E. Differential expression of sialic acid on porcine organs during the maturation process. Comp Biochem Physiol Biochem Mol Biol 2000;126:415-424.

  22. Hernández J, Reyes-Leyva J, Zenteno R, Ramírez H, Hernández-Jaúregui P, and Zenteno E. Immunity to porcine rubulavirus infection in adult porcine. Vet Immunol Immunopathol 1998;64:367-381.

  23. Hernández-Jáuregui P, Sundqvist A, Fuentes M, Díaz A, Reyes-Leyva J, Hernández E, Moreno-López J. Correlación entre las pruebas de virus neutralización, inhibición de la hemoaglutinación y ELISA en sueros vacunales y de brote para anticuerpos contra el Paramixovirus del Síndrome del Ojo Azul en cerdos. Vet Mex 1992;23:217-222.

  24. Zenteno R. Purificación y predicción de determinantes antigénicos y de estructura secundaria en la hemaglutinina-neuraminidasa del paramixovirus porcino de La Piedad Michoacán. (tesis de maestría). México (Distrito Federal) México: Universidad Nacional Autónoma de México, 1997.

  25. Ray R, Compans RW. Paramyxoviruses. In: Van Regenmortel MHB, Neurath AR editors. Immunochemistry of viruses II. The basis for serodiagnosis and vaccines. New York:Elsevier, 1990: 217-236.

  26. Abbas AK, Lichtman AH, Pober JS. Cellular and molecular immunology. 4 ed. Philadelphia Pennsylvania, W.B. Saunders, 2000.

  27. Griffit D, Ward B, Esolen L. Pathogenesis of measles virus infection: a hypothesis for altered immune response. J Infect Dis 1994;170:S24-31.

  28. Griffit D, Bellini W. Measles Virus. In: Fields BN, Knipe DM, Howley PM, editors. Fields in Virology. Philadelphia. New York: Lippincott-Raven Publishers, 1996:1267-1312.

  29. Fujinami RS, and Oldstone MBA. Alterations in expression of measles virus polypeptides by antibody: molecular events in antibody induced antigenic modulation. J Immunol 1980;125:78-85.

  30. Hjertner B, Wiman AC, Svenda M, Berg M, Moreno-Lopez J, Linne T. Multiple factors including subgenomic RNAs and reduced viral protein expresión are associated with a persistent infection by porcine rubulavirus (LPMV). Arch Virol 1998;143:425-39.

  31. Wiman AC, Hjertner B, Linné T, Herron B, Allan G, McNeilly F, et al. Porcine rubulavirus LPMV RNA persists in the central nervous system of pigs after recovery from acute infection. J Neurovirol 1998;4:545-52.

  32. Hjertner B, Linné T, Moreno-López J. Establishment and characterization of a porcine rubulavirus (LPMV) persistent infection in porcine kidney cells. Acta Vet Scand 1997;38:213-24.

  33. Kasel JA, Frank AL, Keitel WA, Taber LH, Glezen WP. Acquisition of serum antibodies to specific viral glycoproteins of parainfluenza virus 3 in children. J Virol 1984;52:828-32.

  34. Reyes-Leyva J, Espinosa B, Santos G, Zenteno R, Hernández J, Vallejo V, et al. Purification and characterization of the hemagglutinin-neuraminidase of porcine rubulavirus LPMV. Glycoconj J 1999;16:517-522.

  35. Zenteno R, Hernández J, Espinosa B, Hernández-Jaúregui P, Reyes J, Zenteno E. Secondary structure prediction of the hemagglutinin neuraminidase from a porcine rubulavirus. Arch Virol 1998;143:333-352.

  36. Pescovitz M.D, Lunney J K, Sachs DH. Preparation and characterization of monoclonal antibodies reactive with porcine PBL. J Immunol 1984;133:368-373.

  37. Yang H, Parkhouse RM. Phenotypic classification of porcine lymphocytes sub-populations in blood and lymphoid tissues. Immunology 1996;89:76-83.

  38. Saalmueller A, Redheads M J, Buhring H J, Jonjic S, Koszinowski UH. Simultaneous expression of CD4 and CD8 antigens by a substantial proportion of resting porcine T lymphocytes. Eur J Immunol 1987;17:1297-1302.

  39. Pescovitz MD, Sakapoulos AG, Gaddy JA, Husmman RJ, Zuckemann FA. Porcine peripheral blood CD4+/CD8+ dual expressing T cells. Vet Immunol Immunopathol 1994;43:53-62.

  40. Zuckermann FA. Extrathymic CD4/CD8 doublepositive T cells. Vet Immunol Immunopathol 1999;72:55-66.

  41. Ward BJ, Johnson RT, Vaisberg A, Jaúregui E, Griffin DE. Cytokine production in vitro and the lymphoproliferative defect of natural measles virus infection. Clin Immunol Immunopathol 1991;61:236-48.

  42. Drew T. A review of evidence for immunosuppression due to Porcine Reproductive and Respiratory Syndrome Virus. Vet Rec 2000;31:27-39.

  43. Zuckermann F, Husmann RJ. Functional and phenotypic analysis of the peripheral blood CD4/CD8 double-positive T cells. Immunology 1996;87:500-512.

  44. Ivanoska D, Cuperlovic K, Lunney JK. Peripheral blood mononuclear cells subsets during Trichinella spiralis infection in pigs. Res Vet Sci 1990;49:92-97.

  45. Hernández J, Garfias Y, Nieto A, Mercado C, Montaño L, Zenteno E. Comparative evaluation of the CD4+CD8+ and CD4+CD8- lymphocytes in the immune response to porcine rubulavirus. Vet Immunol Immunopathol 2001;79:249-259.

  46. Summerfield A, Rhiza H, Saalmueller A. Functional characterization of porcine CD+4CD8+ extrathymic T lymphocytes. Cell Immunol 1996;168:291-296.

  47. Murail-Krishna K, Altman JD, Sures M, Sourdive DJD, Zajac AJ, Miller JD, et al. Counting antigen-specific CD8 T cells: a re-evaluation of bystander activation during viral infection. Immunity 1998;8:177-187.

  48. Rodríguez-Ropon A, Hernández-Jaúregui P, Sánchez-Torres L, Favila-Castillo L, Estrada-Parra S, Moreno-Lopez J, et al. Apoptosis in lymph nodes and changes in lymphocyte subpopulations in peripheral blood of pigs infected with porcine rubulavirus. J Comp Pathol 2003;128:1:8.

  49. Tripp RA, Hou S, McMickle A, Houston J, Doherty PC. Recruitment and proliferation of CD8+ T cells in respiratory virus infections. J Immunol 1995;154:6013-6021.

  50. Page G, Wang F, Hahn E. Interaction of pseudorabies virus with porcine peripheral blood lymphocytes. J Leukoc Biol 1992;52:441-48.

  51. Bradley RW, Swain LM. T cell memory. Annu Rev Immunol 1998;16:201-223.

  52. Galvan M, Murali-Krishna K, Lua L, Baum L, Ahmed R. Alterations in cell surface carbohydrates on T cells from virally infected mice can distinguish effector-memory CD8+ T cells from naïve cells. J Immunol 1998;161:641-648.

  53. Lascurain R, Porras F, Baez R, Chavez R, Martínez-Cairo S, Alvarez G, et al. Amaranthus leucocarpus recognizes human naive T cell subpopulations. Immunol Inevest 1997;26:579-587.

  54. Hernández J, Garfias Y, Reyes-Leyva J, Chávez R, Lascurain R, Zenteno E. Peanut and Amaranthus leucocarpus lectins discriminate between memory and naïve/quiescent porcine lymphocytes. Vet Immunol Immunopathol 84 2002;84:71-82.

  55. Ober BT, Summerfield A, Mattlimger C, Weismuller KH, Jung G, Pfaff E, et al. Vaccine-induced, pseudorabies virus- specific, extrathymic CD4+CD8+memory T-helper cells in porcine. J Virol 1998;72:4866-4873.

  56. Zinkernagel RM, Bachmann F, Kundis TE, Ochen S, Pirchet H, Hengartner H. On immunological memory. Annu Rev Immunol 1996;14:333-368.

  57. Hernández J. Estudio de la respuesta inmune celular y humoral en cerdos infectados experimentalmente con el rubulavirus porcino. (tesis de maestría). México (Distrito Federal) México: Universidad Nacional Autónoma de México, 1997.

  58. Biron CA. Cytokines in the generation of the immune response to, and resolution of, virus infection. Curr Opin Immunol 1994;6:530-538.

  59. Thacker EL. Immunology of the porcine respiratory disease complex. Vet Clin North Am Food Anim Pract 2001;17:551-65.

  60. Constant SL, Bottomly K. Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol 1997;15:297-322.

  61. Chen WF, Zlotnik A. IL-10: a novel cytotoxic T cell differentiation factor. J Immunol 1991;147:528-536.

  62. Springgs MK. One spet ahead of the game: viral immunomodulatory molecules. Ann Rev Immunol 1996;14:101-30.

  63. Foy TM, Aruffo A, Bojorath J, Buhlmann JE, Noelle RJ. Immune regulation by CD40 and its ligand GP39. Annu Rev Immunol 1996;14:591-617.






>Journals >Veterinaria México >Year 2004, Issue 1
 

· Journal Index 
· Links 






       
Copyright 2019