medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2021; 24 (1)


Los isoprenoides como fuente de biocombustibles

Luqueño-Bocardo OI, Pardo JP, Guerra-Sánchez G, González J, Matus-Ortega G, Romero-Aguilar L
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 40
Paginas:
Archivo PDF: 306.72 Kb.


PALABRAS CLAVE

monoterpenos, lípidos, R. toruloides, biocombustibles, sesquiterpenos, Y. lipolytica.

RESUMEN

Los combustibles fósiles tienen efectos negativos sobre el medio ambiente y, en los últimos años, la preocupación por el agotamiento de las fuentes de este tipo de energía se ha incrementado, por lo que es necesario la implementación de energías alternas que sean amigables con el medio ambiente, que sean económicas y similares o mejores en cuanto al rendimiento energético que las actuales. Los biocombustibles son una fuente de energía que se obtienen de los lípidos de plantas como el maíz, o de los lípidos de microorganismos como las cianobacterias, las bacterias y las levaduras oleaginosas como Rhodosporidium toruloides y Yarrowia lipolytica, estas últimas con una capacidad de acumular hasta el 70% de lípidos en relación a su peso seco. R. toruloides también tiene la particularidad de acumular carotenoides, un tipo de terpeno que tiene importancia comercial. Los biocombustibles que se obtienen de las levaduras, por su origen, se clasifican como de tercera generación, y son energética y estructuralmente similares a los que se extraen de los fósiles, por lo que algunos isoprenoides pueden ser utilizados en la industria de la aviación y automotiz para motores diesel.
R. toruloides tiene la ventaja de integrar a su metabolismo una amplia variedad de azúcares: glucosa, xilosa, manosa, sacarosa, mientras que S. cerevisiae y Y. lipolytica son incapaces de asimilar la xilosa. R. toruloides también tolera variaciones en la temperatura y el pH. Después de Y. lipolytica, R. toruloides es una de las levaduras más exploradas para la producción de biomoléculas, como los lípidos y los terpenos, a partir de los cuales es posible obtener combustibles y aditivos de combustibles. En esta revisión nos enfocamos en describir algunas propiedades de los isoprenoides y sus aplicaciones como combustibles y aditivos de combustible.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Beopoulos, A., Verbeke, J., Bordes, F., Guicherd, M., Bressy, M., Marty, A. & Nicaud, J.-M. (2014). Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 98(1), 251–262. https://doi.org/10.1007/ s00253-013-5295-x

  2. Brennan, T. C., Turner, C. D., Kromer, J. O. & Nielsen, L. K. (2012). Alleviating monoterpene toxicity using a twophase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 109(10), 2513–2522. https://doi. org/10.1002/bit.24536

  3. Callari, R., Meier, Y., Ravasio, D. & Heider, H. (2018). Dynamic Control of ERG20 and ERG9 Expression for Improved Casbene Production in Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology, 6, 160. https://doi.org/10.3389/fbioe.2018.00160

  4. Chang, W. C., Song, H., Liu, H. W. & Liu, P. (2013). Current development in isoprenoid precursor biosynthesis and regulation. Current Opinion in Chemical Biology, 17(4), 571–579. https://doi.org/10.1016/j.cbpa.2013.06.020

  5. Chen, X., Kuhn, E., Jennings, E. W., Nelson, R., Tao, L., Zhang, M. & Tucker, M. P. (2016). DMR (deacetylation and mechanical refining) processing of corn stover achieves high monomeric sugar concentrations (230 g L−1) during enzymatic hydrolysis and high ethanol concentrations (> 10% v/v) during fermentation without hydrolysate purification or concentration. Energy & Environmental Science, 9(4), 1237–1245. https://doi. org/10.1039/C5EE03718B

  6. de Paula, R. G., Antonieto, A. C. C., Ribeiro, L. F. C., Srivastava, N., O’Donovan, A., Mishra, P. K., Gupta, V. K. & Silva, R.N (2019). Engineered microbial host selection for value-added bioproducts from lignocellulose. Biotechnology Advances, 37(6), 107347. https://doi. org/10.1016/j.biotechadv.2019.02.003

  7. Das, M., Patra, P. & Ghosh, A. (2020). Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels. Renewable and Sustainable Energy Reviews, 119, 109562. https://doi.org/10.1016/j.rser.2019.109562

  8. Dinh, H. V., Suthers, P. F., Chan, S. H. J., Shen, Y., Xiao, T., Deewan, A., Jagtap, S. S., Zhao, H., Ro, C. V., Rabinowitz, J. D. & Maranas, C. D. (2019). A comprehensive genomescale model for Rhodosporidium toruloides IFO0880 accounting for functional genomics and phenotypic data. Metabolic Engineering Communications, 9, e00101. https://doi.org/10.1016/j.mec.2019.e00101

  9. Ericsson, J., Appelkvist, E. L., Runquist, M. & Dallner, G. (1993). Biosynthesis of dolichol and cholesterol in rat liver peroxisomes. Biochimie, 75(3–4), 167–173. https:// doi.org/10.1016/0300-9084(93)90074-3

  10. Gajdos, P., Ledesma-Amaro, R., Nicaud, J. M., Certik, M. & Rossignol, T. (2016). Overexpression of diacylglycerol acyltransferase in Yarrowia lipolytica affects lipid body size, number and distribution. FEMS Yeast Research., 16(6). https://doi.org/10.1093/femsyr/fow062

  11. Geiselman, G. M., Zhuang, X., Kirby, J., Tran-Gyamfi, M. B., Prahl, J. P., Sundstrom, E. R., Gao, Y., Munoz Munoz, N., Nicora, C. D., Clay, D.M., Papa, G., Burnum- Johnson, K. E., MAgnuson, J. K., Tanjore, D., Skerker, J. M. & Gladden, J. M (2020). Production of ent-kaurene from lignocellulosic hydrolysate in Rhodosporidium toruloides. Microbial Cell Factories, 19(1), 24. https:// doi.org/10.1186/s12934-020-1293-8

  12. George, K. W., Alonso-Gutierrez, J., Keasling, J. D. & Lee, T. S. (2015). Isoprenoid Drugs, Biofuels, and Chemicals— Artemisinin, Farnesene, and Beyond. In J. Schrader & J. Bohlmann (Eds.), Biotechnology of Isoprenoids (pp. 355–389). https: //doi.org/10.1007/10_2014_288

  13. Gupta, P. & Phulara, S. C. (2015). Metabolic engineering for isoprenoid-based biofuel production. Journal of Applied Microbiology, 119(3), 605–619. https://doi.org/10.1111/ jam.12871

  14. Hakizimana, O., Matabaro, E. & Lee, B. H. (2020). The current strategies and parameters for the enhanced microbial production of 2,3-butanediol. Biotechnology Reports, 25, e00397. https://doi.org/10.1016/j.btre.2019.e00397

  15. Hu, Z., He, B., Ma, L., Sun, Y., Niu, Y. & Zeng, B. (2017). Recent Advances in Ergosterol Biosynthesis and Regulation Mechanisms in Saccharomyces cerevisiae. Indian Journal of Microbiology, 57(3), 270–277. https:// doi.org/10.1007/s12088-017-0657-1

  16. Imatoukene, N., Verbeke, J., Beopoulos, A., Idrissi Taghki, A., Thomasset, B., Sarde, C.-O., Nonus, M. & Nicaud, J.-M. (2017). A metabolic engineering strategy for producing conjugated linoleic acids using the oleaginous yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 101(11), 4605–4616. https://doi. org/10.1007/s00253-017-8240-6

  17. Langi, P., Kiokias, S., Varzakas, T. & Proestos, C. (2018). Carotenoids: From Plants to Food and Feed Industries. Methods in Molecular Biology, 1852, 57–71. https://doi. org/10.1007/978-1-4939-8742-9_3

  18. Li, M., Hou, F., Wu, T., Jiang, X., Li, F., Liu, H., Xian, M. & Zhang, H. (2020). Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories. Natural Product Reports, 37(1), 80–99. The Royal Society of Chemistry. https://doi. org/10.1039/C9NP00016J

  19. Liu, Y., Koh, C. M. J., Yap, S. A., Du, M., Hlaing, M. M. & Ji, L. (2018). Identification of novel genes in the carotenogenic and oleaginous yeast Rhodotorula toruloides through genome-wide insertional mutagenesis. BMC Microbiology, 18(1), 14. https://doi.org/10.1186/ s12866-018-1151-6

  20. Mukhtar, Y. M., Adu-Frimpong, M., Xu, X. & Yu, J. (2018). Biochemical significance of limonene and its metabolites: Future prospects for designing and developing highly potent anticancer drugs. Bioscience Reports, 38(6). https://doi.org/10.1042/BSR20181253

  21. Niehus, X., Crutz-Le Coq, A. M., Sandoval, G., Nicaud, J. M. & Ledesma-Amaro, R. (2018). Engineering Yarrowia lipolytica to enhance lipid production from lignocellulosic materials. Biotechnol for Biofuels, 11, 11. https://doi. org/10.1186/s13068-018-1010-6

  22. Pimienta, J. A. P., Papa, G., Rodriguez, A., Barcelos, C. A., Liang, L., Stavila, V., Sanchez, A., Gladden, J. M. & Simmons, B. A. (2019). Pilot-scale hydrothermal pretreatment and optimized saccharification enables bisabolene production from multiple feedstocks. Green Chemistry, 21(11), 3152–3164. The Royal Society of Chemistry. https://doi.org/10.1039/C9GC00323A

  23. Pourbafrani, M., Forgacs, G., Horvath, I. S., Niklasson, C. & Taherzadeh, M. J. (2010). Production of biofuels, limonene and pectin from citrus wastes. Bioresource Technology, 101(11), 4246–4250. https://doi. org/10.1016/j.biortech.2010.01.077

  24. Rodriguez, A., Ersig, N., Geiselman, G. M., Seibel, K., Simmons, B. A., Magnuson, J. K., Eudes, A. & Gladden, J. M. (2019). Conversion of depolymerized sugars and aromatics from engineered feedstocks by two oleaginous red yeasts. Bioresource Technology, 286, 121365. https:// doi.org/10.1016/j.biortech.2019.121365

  25. Rossoni, L., Carr, R., Baxter, S., Cortis, R., Thorpe, T., Eastham, G. & Stephens, G. (2018). Engineering Escherichia coli to grow constitutively on D-xylose using the carbon-efficient Weimberg pathway. Microbiology, 164(3), 287–298. https://doi.org/10.1099/mic.0.000611

  26. Salis, A., Pinna, M., Monduzzi, M. & Solinas, V. (2005). Biodiesel production from triolein and short chain alcohols through biocatalysis. Journal of Biotechnology, 119(3), 291–299. https://doi.org/10.1016/j.jbiotec.2005.04.009

  27. Salvachúa, D., Katahira, R., Cleveland, N. S., Khanna, P., Resch, M. G., Black, B. A., Purvine, S. O.,Zink, E. M., Prieto, A., Martínez, M. J., Martínez, Angel T., Simmons, B. A., Gladden, J. M. & Beckhmam, G. T. (2016). Lignin depolymerization by fungal secretomes and a microbial sink. Green Chemistry, 18, 6046–6062. https://doi. org/10.1039/C6GC021531J

  28. Shaw, J. J., Berbasova, T., Sasaki, T., Jefferson-George, K., Spakowicz, D. J., Dunican, B. F., Portero, C. E., Narvaez- Trujillo, A. & Strobel, S. A. (2015). Identification of a fungal 1,8-cineole synthase from Hypoxylon sp. With specificity determinants in common with the plant synthases. Journal of Biological Chemistry, 290(13), 8511–8526. https://doi.org/10.1074/jbc.M114.636159

  29. Singh, G., Jeyaseelan, C., Bandyopadhyay, K. K. & Paul, D. (2018). Comparative analysis of biodiesel produced by acidic transesterification of lipid extracted from oleaginous yeast Rhodosporidium toruloides. 3 Biotechnology 8(10), 434. https://doi.org/10.1007/s13205-018-1467-9

  30. Tetali, S. D. (2019). Terpenes and isoprenoids: A wealth of compounds for global use. Planta, 249(1), 1–8. https:// doi.org/10.1007/s00425-018-3056-x

  31. Toivari, M. H., Salusjarvi, L., Ruohonen, L. & Penttila, M. (2004). Endogenous xylose pathway in Saccharomyces cerevisiae. Applied Environmental Microbiology, 70(6), 3681–3686. https://doi.org/10.1128/AEM.70.6.3681- 3686.2004

  32. Wen, Z., Zhang, S., Odoh, C. K., Jin, M. & Zhao, Z. K. (2020). Rhodosporidium toruloides—A potential red yeast chassis for lipids and beyond. FEMS Yeast Research, 20(5). https://doi.org/10.1093/femsyr/foaa038

  33. Xu, P., Qiao, K., Ahn, W. S. & Stephanopoulos, G. (2016). Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proceeding of the National Academic of Sciences of the United States of America, 113(39), 10848–10853. https:// doi.org/10.1073/pnas.1607295113

  34. Yaegashi, J., Kirby, J., Ito, M., Sun, J., Dutta, T., Mirsiaghi, M., Sundstrom, E. R., Rodriguez, A., Baidoo, E., Tanjore, D., Pray, T., Sale, K., Singh, S., Keasling, J. D., Simmons, B. A Singer, S. W., Magnuson, J. K., Arkin, A. P., Skerker, J. M. & Gladden, J. M. (2017). Rhodosporidium toruloides: A new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. Biotechnology for Biofuels, 10, 241. https://doi.org/10.1186/s13068-017- 0927-5

  35. Yusoff, M. F. M., Xu, X. & Guo, Z. (2014). Comparison of Fatty Acid Methyl and Ethyl Esters as Biodiesel Base Stock: A Review on Processing and Production Requirements. Journal of the American Oil Chemists’ Society, 91(4), 525–531. https://doi.org/10.1007/s11746- 014-2443-0

  36. Zada, B., Wang, C., Park, J. B., Jeong, S. H., Park, J. E., Singh, H. B. & Kim, S. W. (2018). Metabolic engineering of Escherichia coli for production of mixed isoprenoid alcohols and their derivatives. Biotechnology for Biofuels, 11, 210. https://doi.org/10.1186/s13068-018-1210-0

  37. Zhang, J. & Zhao, C. (2015). A new approach for bio-jet fuel generation from palm oil and limonene in the absence of hydrogen. Chemical Communications (Camb), 51(97), 17249–17252. https://doi.org/10.1039/c5cc06601h

  38. Zhao, J., Li, C., Zhang, Y., Shen, Y., Hou, J. & Bao, X. (2017). Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae. Microbial Cell Factories, 16(1), 17. https://doi.org/10.1186/s12934-017-0641-9

  39. Zhao, X., Peng, F., Du, W., Liu, C. & Liu, D. (2012). Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid. Bioprocess Biosystems Engineering, 35(6), 993–1004. https://doi.org/10.1186/ s12934-017-0641-9

  40. Zhuang, X., Kilian, O., Monroe, E., Ito, M., Tran-Gymfi, M. B., Liu, F., Davis, R. W., Mirsiaghi, M., Sundstrom, E., Pray, T., Skerker, J. M., George, A. & Gladden, J. M. (2019). Monoterpene production by the carotenogenic yeast Rhodosporidium toruloides. Microbial Cell Factories, 18(1), 54. https://doi.org/10.1186/s12934-019- 1099-8




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2021;24

ARTíCULOS SIMILARES

CARGANDO ...