medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2021; 24 (1)


Mecanismos básicos en la modulación de la expresión génica: algunas implicaciones en el envejecimiento del cerebro

Tecalco-Cruz AC, Macías-Silva M, Ramírez-Jarquín JO, Ríos-López DG, Zepeda-Cervantes J
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 87
Paginas:
Archivo PDF: 353.51 Kb.


PALABRAS CLAVE

expresión génica, epigenética, envejecimiento, neurodegeneración.

RESUMEN

La regulación transcripcional y epigenética son dos procesos interconectados, responsables del encendido y apagado de la expresión de todos los genes. Esta fina modulación de la expresión génica determina el fenotipo de los diferentes tipos celulares, su morfología, su funcionalidad y su habilidad de responder ante diversas condiciones. La regulación epigenética no implica cambios en la secuencia del DNA, pero sí en la generación de numerosos complejos proteicos capaces de modificar la estructura de la cromatina y así modular la expresión génica. La epigenética en los organismos es altamente regulada por varios factores que incluyen la dieta, el ambiente y la actividad física, entre otros. Además, bajo una condición de enfermedad o un estado saludable, así como durante el envejecimiento, se reportan diferencias entre los epigenomas de las células. De manera importante, el envejecimiento es un factor de riesgo directo para el desarrollo de enfermedades neurodegenerativas. En esta revisión presentamos brevemente un panorama general del proceso de regulación transcripcional y de los mecanismos epigenéticos, así como su relación con el proceso del envejecimiento. Alteraciones en los mecanismos epigéneticos son evidentes durante el avance de la edad, los cuales podrían tener alguna influencia en el desarrollo de enfermedades neurodegenerativas.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Baker, D. J. & Petersen, R. C. (2018). Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J. Clin. Invest., 128(4), 1208-1216. DOI: 10.1172/JCI95145

  2. Barter, J. D. & Foster, T. C. (2018). Aging in the Brain: New Roles of Epigenetics in Cognitive Decline. Neuroscientist, 24(5), 516-525. DOI: 10.1177/1073858418780971

  3. Buffenstein, R. (2008). Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species. J. Comp. Physiol. B, 178(4), 439-445. DOI: 10.1007/s00360-007-0237-5

  4. Bussian, T. J., Aziz, A., Meyer, C. F., Swenson, B. L., van Deursen, J. M. & Baker, D. J. (2018). Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature, 562(7728), 578-582. DOI: 10.1038/s41586-018-0543-y

  5. Cadena-del-Castillo, C., Valdes-Quezada, C., Carmona- Aldana, F., Arias, C., Bermudez-Rattoni, F. & Recillas-Targa, F. (2014). Age-dependent increment of hydroxymethylation in the brain cortex in the tripletransgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis., 41(3), 845-854. DOI: 10.3233/JAD- 132285

  6. Calcinotto, A., Kohli, J., Zagato, E., Pellegrini, L., Demaria, M. & Alimonti, A. (2019). Cellular Senescence: Aging, Cancer, and Injury. Physiol. Rev., 99(2), 1047-1078. DOI: 10.1152/physrev.00020.2018

  7. Campisi, J. (2013). Aging, cellular senescence, and cancer. Annu. Rev. Physiol., 75, 685-705. DOI: 10.1146/annurevphysiol- 030212-183653

  8. Cremer, T. & Cremer, M. (2010). Chromosome territories. Cold Spring Harb. Perspect. Biol., 2(3), a003889. DOI: 10.1101/cshperspect.a003889

  9. Chen, Z., Li, S., Subramaniam, S., Shyy, J. Y. & Chien, S. (2017). Epigenetic Regulation: A New Frontier for Biomedical Engineers. Annu. Rev. Biomed. Eng., 19, 195- 219. DOI: 10.1146/annurev-bioeng-071516-044720

  10. Christopher, M. A., Kyle, S. M. & Katz, D. J. (2017). Neuroepigenetic mechanisms in disease. Epigenetics Chromatin, 10(1), 47. DOI: 10.1186/s13072-017-0150-4

  11. Dasgupta, S., Lonard, D. M. & O’Malley, B. W. (2014). Nuclear receptor coactivators: master regulators of human health and disease. Annu. Rev. Med., 65, 279-292. DOI: 10.1146/annurev-med-051812-145316

  12. Day, K., Waite, L. L., Thalacker-Mercer, A., West, A., Bamman, M. M., Brooks, J. D., Myers, R. M. & Absher, D. (2013). Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol., 14(9), R102. DOI: 10.1186/gb-2013-14-9-r102

  13. Delaney, M. A., Kinsel, M. J. & Treuting, P. M. (2016a). Renal Pathology in a Nontraditional Aging Model: The Naked Mole-Rat (Heterocephalus glaber). Vet. Pathol., 53(2), 493-503. DOI: 10.1177/0300985815612557

  14. Delaney, M. A., Ward, J. M., Walsh, T. F., Chinnadurai, S. K., Kerns, K., Kinsel, M. J. & Treuting, P. M. (2016b). Initial Case Reports of Cancer in Naked Mole-rats (Heterocephalus glaber). Vet. Pathol., 53(3), 691-696. DOI: 10.1177/0300985816630796

  15. Edrey, Y. H., Hanes, M., Pinto, M., Mele, J. & Buffenstein, R. (2011). Successful aging and sustained good health in the naked mole rat: a long-lived mammalian model for biogerontology and biomedical research. ILAR J., 52(1), 41-53. DOI: 10.1093/ilar.52.1.41

  16. Elkon, R. & Agami, R. (2017). Characterization of noncoding regulatory DNA in the human genome. Nat. Biotechnol., 35(8), 732-746. DOI: 10.1038/nbt.3863

  17. Erokhin, M., Vassetzky, Y., Georgiev, P. & Chetverina, D. (2015). Eukaryotic enhancers: common features, regulation, and participation in diseases. Cell Mol. Life Sci., 72(12), 2361-2375. DOI: 10.1007/s00018-015- 1871-9

  18. Farrelly, L. A., Thompson, R. E., Zhao, S., Lepack, A. E., Lyu, Y., Bhanu, N. V., Zhang, B., Loh, Y. E., Ramakrishnan, A., Vadodaria, K. C., Heard, K. J., Erikson, G., Nakadai, T., Bastle, R. M., Lukasak, B. J., Zebroski, H., 3rd, Alenina, N., Bader, M., Berton, O., Roeder, R. G., Molina, H., Gage, F. H., Shen, L., Garcia, B. A., Li, H., Muir, T. W. & Maze, I. (2019). Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature, 567(7749), 535-539. DOI: 10.1038/s41586-019- 1024-7

  19. Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., Heine-Suner, D., Cigudosa, J. C., Urioste, M., Benitez, J., Boix-Chornet, M., Sanchez-Aguilera, A., Ling, C., Carlsson, E., Poulsen, P., Vaag, A., Stephan, Z., Spector, T. D., Wu, Y. Z., Plass, C. & Esteller, M. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. U S A, 102(30), 10604-10609. DOI: 10.1073/pnas.0500398102

  20. Fransquet, P. D. & Ryan, J. (2018). Micro RNA as a potential blood-based epigenetic biomarker for Alzheimer’s disease. Clin. Biochem., 58, 5-14. DOI: 10.1016/j. clinbiochem.2018.05.020

  21. Gomes, C. P. C., Agg, B., Andova, A., Arslan, S., Baker, A., Bartekova, M., Beis, D., Betsou, F., Wettinger, S. B., Bugarski, B., Condorelli, G., Silva, G., Danilin, S., de Gonzalo-Calvo, D., Buil, A., Carmo-Fonseca, M., Enguita, F. J., Felekkis, K., Ferdinandy, P., Gyongyosi, M., Hackl, M., Karaduzovic-Hadziabdic, K., Hellemans, J., Heymans, S., Hlavackova, M., Hoydal, M. A., Jankovic, A., Jusic, A., Kardassis, D., Kerkela, R., Kuster, G. M., Lakkisto, P., Leszek, P., Lustrek, M., Maegdefessel, L., Martelli, F., Novella, S., O’Brien, T., Papaneophytou, C., Pedrazzini, T., Pinet, F., Popescu, O., Potocnjak, I., Robinson, E., Sasson, S., Scholz, M., Simionescu, M., Stoll, M., Varga, Z. V., Vinciguerra, M., Xuereb, A., Yilmaz, M. B., Emanueli, C., Devaux, Y. & on behalf of the, E. U. C. C. A. (2019). Catalyzing Transcriptomics Research in Cardiovascular Disease: The CardioRNA COST Action CA17129. Noncoding RNA, 5(2). DOI: 10.3390/ncrna5020031

  22. Gonzalez-Sandoval, A. & Gasser, S. M. (2016). On TADs and LADs: Spatial Control Over Gene Expression. Trends Genet., 32(8), 485-495. DOI: 10.1016/j.tig.2016.05.004

  23. Guertin, M. J. & Lis, J. T. (2013). Mechanisms by which transcription factors gain access to target sequence elements in chromatin. Curr. Opin Genet. Dev., 23(2), 116-123. DOI: 10.1016/j.gde.2012.11.008

  24. Guo, J. (2014). Transcription: the epicenter of gene expression. J. Zhejiang Univ. Sci. B, 15(5), 409-411. DOI: 10.1631/ jzus.B1400113 24. Haas, B. W., Filkowski, M. M., Cochran, R. N., Denison, L., Ishak, A., Nishitani, S. & Smith, A. K. (2016). Epigenetic modification of OXT and human sociability. Proc. Natl. Acad. Sci. U S A, 113(27), E3816-3823. DOI: 10.1073/ pnas.1602809113

  25. Hernandez, D. G., Nalls, M. A., Gibbs, J. R., Arepalli, S., van der Brug, M., Chong, S., Moore, M., Longo, D. L., Cookson, M. R., Traynor, B. J. & Singleton, A. B. (2011). Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum. Mol. Genet., 20(6), 1164-1172. DOI: 10.1093/hmg/ddq561

  26. Horvath, S. & Raj, K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet., 19(6), 371-384. DOI: 10.1038/s41576- 018-0004-3

  27. Horvath, S., Zhang, Y., Langfelder, P., Kahn, R. S., Boks, M. P., van Eijk, K., van den Berg, L. H. & Ophoff, R. A. (2012). Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol., 13(10), R97. DOI: 10.1186/gb-2012-13-10-r97

  28. Hunter, S., Arendt, T. & Brayne, C. (2013). The senescence hypothesis of disease progression in Alzheimer disease: an integrated matrix of disease pathways for FAD and SAD. Mol. Neurobiol., 48(3), 556-570. DOI: 10.1007/ s12035-013-8445-3

  29. Hwang, J. Y. & Zukin, R. S. (2018). REST, a master transcriptional regulator in neurodegenerative disease. Curr. Opin. Neurobiol., 48, 193-200. DOI: 10.1016/j. conb.2017.12.008

  30. Ishikawa, S. & Ishikawa, F. (2020). Proteostasis failure and cellular senescence in long-term cultured postmitotic rat neurons. Aging Cell, 19(1), e13071. DOI: 10.1111/ acel.13071

  31. Kaas, G. A., Zhong, C., Eason, D. E., Ross, D. L., Vachhani, R. V., Ming, G. L., King, J. R., Song, H. & Sweatt, J. D. (2013). TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron., 79(6), 1086-1093. DOI: 10.1016/j.neuron.2013.08.032

  32. Kagey, M. H., Newman, J. J., Bilodeau, S., Zhan, Y., Orlando, D. A., van Berkum, N. L., Ebmeier, C. C., Goossens, J., Rahl, P. B., Levine, S. S., Taatjes, D. J., Dekker, J. & Young, R. A. (2010). Mediator and cohesin connect gene expression and chromatin architecture. Nature, 467(7314), 430-435. DOI: 10.1038/nature09380

  33. Kemme, C. A., Marquez, R., Luu, R. H. & Iwahara, J. (2017). Potential role of DNA methylation as a facilitator of target search processes for transcription factors through interplay with methyl-CpG-binding proteins. Nucleic Acids Res., 45(13), 7751-7759. DOI: 10.1093/nar/gkx387

  34. Kim, S., Welsh, D. A., Myers, L., Cherry, K. E., Wyckoff, J. & Jazwinski, S. M. (2015). Non-coding genomic regions possessing enhancer and silencer potential are associated with healthy aging and exceptional survival. Oncotarget, 6(6), 3600-3612. DOI: 10.18632/oncotarget.2877

  35. Kriaucionis, S. & Heintz, N. (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 324(5929), 929-930. DOI: 10.1126/science.1169786

  36. Kritsilis, M., S, V. R., Koutsoudaki, P. N., Evangelou, K., Gorgoulis, V. G. & Papadopoulos, D. (2018). Ageing, Cellular Senescence and Neurodegenerative Disease. Int. J. Mol. Sci., 19(10). DOI: 10.3390/ijms19102937

  37. Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., Chen, X., Taipale, J., Hughes, T. R. & Weirauch, M. T. (2018). The Human Transcription Factors. Cell, 172(4), 650-665. DOI: 10.1016/j.cell.2018.01.029

  38. Langst, G. & Manelyte, L. (2015). Chromatin Remodelers: From Function to Dysfunction. Genes (Basel), 6(2), 299- 324. DOI: 10.3390/genes6020299

  39. Lardenoije, R., Iatrou, A., Kenis, G., Kompotis, K., Steinbusch, H. W., Mastroeni, D., Coleman, P., Lemere, C. A., Hof, P. R., van den Hove, D. L. & Rutten, B. P. (2015). The epigenetics of aging and neurodegeneration. Prog. Neurobiol., 131, 21-64. DOI: 10.1016/j. pneurobio.2015.05.002

  40. Lawrence, M., Daujat, S. & Schneider, R. (2016). Lateral Thinking: How Histone Modifications Regulate Gene Expression. Trends Genet., 32(1), 42-56. DOI: 10.1016/j. tig.2015.10.007

  41. Levine, M. E., Lu, A. T., Bennett, D. A. & Horvath, S. (2015). Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging (Albany NY), 7(12), 1198-1211. DOI: 10.18632/aging.100864

  42. Li, P., Marshall, L., Oh, G., Jakubowski, J. L., Groot, D., He, Y., Wang, T., Petronis, A. & Labrie, V. (2019). Epigenetic dysregulation of enhancers in neurons is associated with Alzheimer’s disease pathology and cognitive symptoms. Nat. Commun., 10(1), 2246. DOI: 10.1038/s41467-019- 10101-7

  43. Lowe, R., Danson, A. F., Rakyan, V. K., Yildizoglu, S., Saldmann, F., Viltard, M., Friedlander, G. & Faulkes, C. G. (2020). DNA methylation clocks as a predictor for ageing and age estimation in naked mole-rats, Heterocephalus glaber. Aging (Albany NY), 12(5), 4394- 4406. DOI: 10.18632/aging.102892

  44. Lu, T., Aron, L., Zullo, J., Pan, Y., Kim, H., Chen, Y., Yang, T. H., Kim, H. M., Drake, D., Liu, X. S., Bennett, D. A., Colaiacovo, M. P. & Yankner, B. A. (2014). REST and stress resistance in ageing and Alzheimer’s disease. Nature, 507(7493), 448-454. DOI: 10.1038/nature13163

  45. MacRae, S. L., Croken, M. M., Calder, R. B., Aliper, A., Milholland, B., White, R. R., Zhavoronkov, A., Gladyshev, V. N., Seluanov, A., Gorbunova, V., Zhang, Z. D. & Vijg, J. (2015). DNA repair in species with extreme lifespan differences. Aging (Albany NY), 7(12), 1171-1184. DOI: 10.18632/aging.100866

  46. Martin-Kleiner, I. (2012). BORIS in human cancers -- a review. Eur. J. Cancer, 48(6), 929-935. DOI: 10.1016/j. ejca.2011.09.009

  47. Martinez-Cue, C. & Rueda, N. (2020). Cellular Senescence in Neurodegenerative Diseases. Front. Cell Neurosci., 14, 16. DOI: 10.3389/fncel.2020.00016

  48. Martinez-Zamudio, R. I., Robinson, L., Roux, P. F. & Bischof, O. (2017). SnapShot: Cellular Senescence in Pathophysiology. Cell, 170(5), 1044-1044 e1041. DOI: 10.1016/j.cell.2017.08.025

  49. Masaldan, S., Belaidi, A. A., Ayton, S. & Bush, A. I. (2019). Cellular Senescence and Iron Dyshomeostasis in Alzheimer’s Disease. Pharmaceuticals (Basel), 12(2). DOI: 10.3390/ph12020093

  50. Mashtalir, N., D’Avino, A. R., Michel, B. C., Luo, J., Pan, J., Otto, J. E., Zullow, H. J., McKenzie, Z. M., Kubiak, R. L., St Pierre, R., Valencia, A. M., Poynter, S. J., Cassel, S. H., Ranish, J. A. & Kadoch, C. (2018). Modular Organization and Assembly of SWI/SNF Family Chromatin Remodeling Complexes. Cell, 175(5), 1272- 1288 e1220. DOI: 10.1016/j.cell.2018.09.032

  51. Mayran, A., Sochodolsky, K., Khetchoumian, K., Harris, J., Gauthier, Y., Bemmo, A., Balsalobre, A. & Drouin, J. (2019). Pioneer and nonpioneer factor cooperation drives lineage specific chromatin opening. Nat. Commun., 10(1), 3807. DOI: 10.1038/s41467-019-11791-9

  52. Medeiros, R. & LaFerla, F. M. (2013). Astrocytes: conductors of the Alzheimer disease neuroinflammatory symphony. Exp. Neurol., 239, 133-138. DOI: 10.1016/j. expneurol.2012.10.007

  53. Mehler, M. F. (2008). Epigenetics and the nervous system. Ann. Neurol., 64(6), 602-617. DOI: 10.1002/ana.21595

  54. Michaeli, Y., Shahal, T., Torchinsky, D., Grunwald, A., Hoch, R. & Ebenstein, Y. (2013). Optical detection of epigenetic marks: sensitive quantification and direct imaging of individual hydroxymethylcytosine bases. Chem. Commun. (Camb.), 49(77), 8599-8601. DOI: 10.1039/ c3cc42543f

  55. Moraes, F. & Goes, A. (2016). A decade of human genome project conclusion: Scientific diffusion about our genome knowledge. Biochem. Mol. Biol. Educ., 44(3), 215-223. DOI: 10.1002/bmb.20952

  56. Nacarelli, T., Liu, P. & Zhang, R. (2017). Epigenetic Basis of Cellular Senescence and Its Implications in Aging. Genes (Basel), 8(12). DOI: 10.3390/genes8120343

  57. Nativio, R., Donahue, G., Berson, A., Lan, Y., Amlie-Wolf, A., Tuzer, F., Toledo, J. B., Gosai, S. J., Gregory, B. D., Torres, C., Trojanowski, J. Q., Wang, L. S., Johnson, F. B., Bonini, N. M. & Berger, S. L. (2018). Publisher Correction: Dysregulation of the epigenetic landscape of normal aging in Alzheimer’s disease. Nat. Neurosci., 21(7), 1018. DOI: 10.1038/s41593-018-0124-2

  58. Ouellet-Morin, I., Wong, C. C., Danese, A., Pariante, C. M., Papadopoulos, A. S., Mill, J. & Arseneault, L. (2013). Increased serotonin transporter gene (SERT) DNA methylation is associated with bullying victimization and blunted cortisol response to stress in childhood: a longitudinal study of discordant monozygotic twins. Psychol. Med., 43(9), 1813-1823. DOI: 10.1017/ S0033291712002784

  59. Pagiatakis, C., Musolino, E., Gornati, R., Bernardini, G. & Papait, R. (2019). Epigenetics of aging and disease: a brief overview. Aging Clin. Exp. Res. DOI: 10.1007/ s40520-019-01430-0

  60. Pal, S. & Tyler, J. K. (2016). Epigenetics and aging. Sci. Adv., 2(7), e1600584. DOI: 10.1126/sciadv.1600584

  61. Parasramka, M. A., Maji, S., Matsuda, A., Yan, I. K. & Patel, T. (2016). Long non-coding RNAs as novel targets for therapy in hepatocellular carcinoma. Pharmacol. Ther., 161, 67-78. DOI: 10.1016/j.pharmthera.2016.03.004

  62. Perez, V. I., Buffenstein, R., Masamsetti, V., Leonard, S., Salmon, A. B., Mele, J., Andziak, B., Yang, T., Edrey, Y., Friguet, B., Ward, W., Richardson, A. & Chaudhuri, A. (2009). Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc. Natl. Acad. Sci. U S A, 106(9), 3059-3064. DOI: 10.1073/pnas.0809620106

  63. Piechota, M., Sunderland, P., Wysocka, A., Nalberczak, M., Sliwinska, M. A., Radwanska, K. & Sikora, E. (2016). Is senescence-associated beta-galactosidase a marker of neuronal senescence? Oncotarget, 7(49), 81099-81109. DOI: 10.18632/oncotarget.12752

  64. Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S. & Aiden, E. L. (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159(7), 1665-1680. DOI: 10.1016/j.cell.2014.11.021

  65. Reiter, F., Wienerroither, S. & Stark, A. (2017). Combinatorial function of transcription factors and cofactors. Curr. Opin. Genet. Dev., 43, 73-81. DOI: 10.1016/j.gde.2016.12.007

  66. Richards, E. J. & Elgin, S. C. (2002). Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell, 108(4), 489-500. DOI: 10.1016/ s0092-8674(02)00644-x

  67. Rizos, H., Haferkamp, S. & Scurr, L. L. (2017). Senescence. In A. Bosserhoff (Ed.), Melanoma Development (pp. 289- 310). Springer, Cham.

  68. Roy, A. L. & Singer, D. S. (2015). Core promoters in transcription: old problem, new insights. Trends Biochem. Sci., 40(3), 165-171. DOI: 10.1016/j.tibs.2015.01.007

  69. Ruby, J. G., Smith, M. & Buffenstein, R. (2018). Naked Mole-Rat mortality rates defy gompertzian laws by not increasing with age. Elife, 7. DOI: 10.7554/eLife.31157

  70. Saksouk, N., Simboeck, E. & Dejardin, J. (2015). Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin, 8, 3. DOI: 10.1186/1756-8935-8- 3

  71. Scurr, L. L., Haferkamp, S. & Rizos, H. (2017). The Role of Sumoylation in Senescence. Adv. Exp. Med. Biol., 963, 215-226. DOI: 10.1007/978-3-319-50044-7_13

  72. Sidler, C., Kovalchuk, O. & Kovalchuk, I. (2017). Epigenetic Regulation of Cellular Senescence and Aging. Front. Genet., 8, 138. DOI: 10.3389/fgene.2017.00138

  73. Susztak, K. (2014). Understanding the epigenetic syntax for the genetic alphabet in the kidney. J. Am. Soc. Nephrol., 25(1), 10-17. DOI: 10.1681/ASN.2013050461

  74. Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L. & Rao, A. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929), 930-935. DOI: 10.1126/science.1170116

  75. Tie, F., Banerjee, R., Saiakhova, A. R., Howard, B., Monteith, K. E., Scacheri, P. C., Cosgrove, M. S. & Harte, P. J. (2014). Trithorax monomethylates histone H3K4 and interacts directly with CBP to promote H3K27 acetylation and antagonize Polycomb silencing. Development, 141(5), 1129-1139. DOI: 10.1242/dev.102392

  76. Torres, R. F., Kouro, R. & Kerr, B. (2019). Writers and Readers of DNA Methylation/Hydroxymethylation in Physiological Aging and Its Impact on Cognitive Function. Neural Plast, 2019, 5982625. DOI: 10.1155/2019/5982625

  77. Tremolizzo, L., Carboni, G., Ruzicka, W. B., Mitchell, C. P., Sugaya, I., Tueting, P., Sharma, R., Grayson, D. R., Costa, E. & Guidotti, A. (2002). An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc. Natl. Acad. Sci. U S A, 99(26), 17095-17100. DOI: 10.1073/pnas.262658999

  78. Tsankova, N. M., Berton, O., Renthal, W., Kumar, A., Neve, R. L. & Nestler, E. J. (2006). Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci., 9(4), 519-525. DOI: 10.1038/nn1659

  79. Xiao, X., Liu, X. & Jiao, B. (2020). Epigenetics: Recent Advances and Its Role in the Treatment of Alzheimer’s Disease. Front. Neurol., 11, 538301. DOI: 10.3389/ fneur.2020.538301

  80. Yan, M. S., Matouk, C. C, & Marsden, P. A. (2010). Epigenetics of the vascular endothelium. J. Appl. Physiol. (1985), 109(3), 916-926. DOI: 10.1152/japplphysiol.00131.2010

  81. Yin, J. W. & Wang, G. (2014). The Mediator complex: a master coordinator of transcription and cell lineage development. Development, 141(5), 977-987. DOI: 10.1242/dev.098392

  82. Yu, C., Li, Y., Holmes, A., Szafranski, K., Faulkes, C. G., Coen, C. W., Buffenstein, R., Platzer, M., de Magalhaes, J. P. & Church, G. M. (2011). RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice. PLoS One, 6(11), e26729. DOI: 10.1371/journal.pone.0026729

  83. Yun, M., Wu, J., Workman, J. L. & Li, B. (2011). Readers of histone modifications. Cell Res., 21(4), 564-578. DOI: 10.1038/cr.2011.42

  84. Zaret, K. S, & Carroll, J. S. (2011). Pioneer transcription factors: establishing competence for gene expression. Genes Dev., 25(21), 2227-2241. DOI: 10.1101/ gad.176826.111

  85. Zhang, W., Qu, J., Liu, G. H. & Belmonte, J. C. I. (2020). The ageing epigenome and its rejuvenation. Nat. Rev. Mol. Cell Biol., 21(3), 137-150. DOI: 10.1038/s41580- 019-0204-5

  86. Zhou, X. & Xu, J. (2015). Identification of Alzheimer’s disease-associated long noncoding RNAs. Neurobiol. Aging, 36(11), 2925-2931. DOI: 10.1016/j. neurobiolaging.2015.07.015

  87. Zippo, A., Serafini, R., Rocchigiani, M., Pennacchini, S., Krepelova, A. & Oliviero, S. (2009). Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell, 138(6), 1122-1136. DOI: 10.1016/j.cell.2009.07.031




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2021;24

ARTíCULOS SIMILARES

CARGANDO ...