medigraphic.com
ENGLISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2022, Número 1

<< Anterior Siguiente >>

salud publica mex 2022; 64 (1)


Variantes patógenas de línea germinal en mexicanas con cáncer de mama triple negativo hereditario

Chavarri-Guerra Y, Villarreal-Garza C, Ferrigno AS, Mohar-Betancourt A, Aguilar D, Alvarez-Gomez RM, Gallardo-Alvarado L, del Toro-Valero A, Quintero-Beulo G, Gutierrez-Delgado F, Rodriguez-Olivares JL, Ochoa-Chavez MF, Gutierrez-Seymour G, Castillo D, Herzog J, Weitzel JN
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 37
Paginas: 41-48
Archivo PDF: 298.57 Kb.


PALABRAS CLAVE

cáncer de mama, t, riple negativo, mutación de línea germinal, variantes patógenas, evaluación del riesgo de cáncer genético, BRCA, México.

RESUMEN

Objetivo. Describir la prevalencia de variantes patógenas (VPs) germinales en genes asociados con cáncer de mama (CM) en pacientes mexicanos con CM triple negativo (CMTN). Material y métodos. Se analizó el espectro de VPs identificadas en pacientes con CMTN que fueron incluidos prospectivamente en un registro y se realizó un estudio genético. Resultados. Se analizó un total de 387 pacientes con una mediana de edad al diagnóstico de 39 años; 113 (29%) eran portadores de VPs en genes de susceptibilidad a CM: BRCA1 (79%), BRCA2 (15%), y otros (6%: ATM, BRIP1, PALB2, PTEN, RAD51C y TP53). Los portadores de VPs eran más jóvenes al diagnóstico de CM (37 vs. 40 años, p=0.004). Conclusiones. Existe una alta prevalencia de VPs en pacientes mexicanos con CMTN y la mayoría se encuentra en genes BRCA. La realización de pruebas genéticas se puede optimizar mediante la adopción de un proceso escalonado para la detección de VPs.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. https://doi.org/10.3322/caac.21660

  2. Instituto Nacional de Estadística y Geografía. Comunicado de prensa núm. 462/20 15 de octubre de 2020 página 1/2 estadísticas a propósito del día mundial de la lucha contra el cáncer de mama (19 de octubre) [Internet]. Mexico City: INEGI, 2020 [Accessed March 8, 2021]. Available from: https://www.inegi.org.mx/contenidos/saladeprensa/aproposito/2020/ Cancermama20.pdf

  3. Chávarri-Guerra Y, Villarreal-Garza C, Liedke PER, Knaul F, Mohar A, Finkelstein D, Goss PE. Breast cancer in Mexico: A growing challenge to health and the health system. Lancet Oncol. 2012;13(8):e335-43. https:// doi.org/10.1016/S1470-2045(12)70246-2

  4. Yoshida R. Hereditary breast and ovarian cancer (HBOC): review of its molecular characteristics, screening, treatment, and prognosis. Breast Cancer. 2020. https://doi.org/10.1007/s12282-020-01148-2

  5. Shiovitz S, Korde L. Genetics of breast cancer: a topic in evolution. Ann Oncol. 2015;26(7):1291-1299. https://doi.org/10.1093/annonc/mdv022

  6. Apostolou P, Fostira F. Hereditary breast cancer: The Era of new susceptibility genes. Biomed Res Int. 2013;2013:747318. https://doi. org/10.1155/2013/747318

  7. Spurdle AB, Couch FJ, Parsons MT, McGuffog L, Barrowdale D, Bolla MK, et al. Refined histopathological predictors of BRCA1 and BRCA2 mutation status: A large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia. Breast Cancer Res. 2014;16(6):3419. https://doi.org/10.1186/s13058-014-0474-y

  8. Tung NM, Garber JE. BRCA1/2 testing: Therapeutic implications for breast cancer management. Br J Cancer. 2018;119(2):141-152. https://doi. org/10.1038/s41416-018-0127-5

  9. Kurian AW, Katz SJ. Emerging opportunity of cascade genetic testing for population-wide cancer prevention and control. J Clin Oncol. 2020;38(13):1371-4. https://doi.org/10.1200/JCO.20.00140

  10. National Comprehensive Cancer Network. Genetic/Familiar High-Risk Assessment: Breast, Ovarian, and Pancreas Version 2 [Internet]. NCCN, 2020 [accessed March 8, 2021]. Available from: https://www.nccn.org/ professionals/physician_gls/pdf/genetics_bop.pdf

  11. Chavarri-Guerra Y, Blazer KR, Weitzel JN. Genetic cancer risk assessment for breast cancer in Latin America. Rev Investig Clin. 2017;69(2):94- 102. https://doi.org/10.24875/RIC.17002195

  12. Blazer KR, Chavarri-Guerra Y, Garza CV, Nehoray B, Mohar A, Daneri- Navarro A, et al. Development and Pilot Implementation of the Genomic Risk Assessment for Cancer Implementation and Sustainment (GRACIAS) Intervention in Mexico. JCO Glob Oncol. 2021;7:992-1002. https://doi. org/10.1200/GO.20.00587

  13. Villarreal-Garza C, Alvarez-Gómez RM, Pérez-Plasencia C, Herrera LA, Herzog J, Castillo D, et al. Significant clinical impact of recurrent BRCA1 and BRCA2 mutations in Mexico. Cancer. 2015;121(3):372-8. https://doi. org/10.1002/cncr.29058

  14. Villarreal-Garza C, Weitzel JN, Llacuachaqui M, Llacuachaquie M, Sifuentes E, Magallanes-Hoyos MC, et al. The prevalence of BRCA1 and BRCA2 mutations among young Mexican women with triple-negative breast cancer. Breast Cancer Res Treat. 2015;150(2):389-94. https://doi. org/10.1007/s10549-015-3312-8

  15. Zayas-Villanueva OA, Campos-Acevedo LD, Lugo-Trampe JDJ, Hernández- Barajas D, González-Guerrero JF, Noriega-Iriondo MF, et al. Analysis of the pathogenic variants of BRCA1 and BRCA2 using next-generation sequencing in women with familial breast cancer: A case-control study. BMC Cancer. 2019;19(1):722. https://doi.org/10.1186/s12885-019-5950-4

  16. Reynoso-Noverón N, Villarreal-Garza C, Soto-Perez-de-Celis E, Arce- Salinas C, Matus-Santos J, Ramírez-Ugalde MT, et al. Clinical and epidemiological profile of breast cancer in Mexico: results of the Seguro Popular. J Glob Oncol. 2017;3(6):757-64. https://doi.org/10.1200/jgo.2016.007377

  17. Lara-Medina F, Pérez-Sánchez V, Saavedra-Pérez D, Blake-Cerda M, Arce C, Motola-Koba D, et al. Triple-negative breast cancer in Hispanic patients: High prevalence, poor prognosis, and association with menopausal status, body mass index, and parity. Cancer. 2011;117(16):3658-69. https://doi. org/10.1002/cncr.25961

  18. Weitzel JN, Clague J, Martir-Negron A, Ogaz R, Herzog J, RickerChelsy C, et al. Prevalence and type of BRCA mutations in Hispanics undergoing genetic cancer risk assessment in the southwestern United States: A report from the clinical cancer genetics community research network. J Clin Oncol. 2013;31(2):210-16. https://doi.org/10.1200/JCO.2011.41.0027

  19. Hahnen E, Hauke J, Engel C, Neidhardt G, Rhiem K, Schmutzler RK. Germline mutations in triple-negative breast cancer. Breast Care. 2017;12(1):15-19. https://doi.org/10.1159/000455999

  20. Stevens KN, Vachon CM, Couch FJ. Genetic susceptibility to triplenegative breast cancer. Cancer Res. 2013;73(7):2025-30. https://doi. org/10.1158/0008-5472.CAN-12-1699

  21. Couch FJ, Hart SN, Sharma P, Tikabd AE, Wang X, Miron P, et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triplenegative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol. 2015;33(4):304-311. https://doi.org/10.1200/JCO.2014.57.1414

  22. Sun J, Meng H, Yao L,Lv M, Bai J, Zhang J, et al. Germline mutations in cancer susceptibility genes in a large series of unselected breast cancer patients. Clin Cancer Res. 2017;23(20):6113-6119. https://doi. org/10.1158/1078-0432.CCR-16-3227

  23. Shimelis H, LaDuca H, Hu C, Hart SN, Na J, Thomas A, et al. Triplenegative breast cancer risk genes identified by multigene hereditary cancer panel testing. J Natl Cancer Inst. 2018;110(8):855-62. https://doi. org/10.1093/jnci/djy106

  24. Ma D, Chen S-Y, Ren J-X, Pei J-C, Jiang C-W, Zhao S, et al. Molecular Features and Functional Implications of Germline Variants in Triple-Negative Breast Cancer. JNCI J Natl Cancer Inst. 2021;113(7):884-92. https:// doi.org/10.1093/jnci/djaa175

  25. Greenup R, Buchanan A, Lorizio W, Rhoads K, Chan S, Leedom T, et al. Prevalence of BRCA mutations among women with triple-negative breast cancer (TNBC) in a genetic counseling cohort. Ann Surg Oncol. 2013;20(10):3254-3258. https://doi.org/10.1245/s10434-013-3205-1

  26. Barcenas CH, Shafaee MN, Sinha AK, Raghavendra A, Saigal B, Murthy R, et al. Genetic counseling referral rates in long-term survivors of triple-negative breast cancer. JNCCN J Natl Compr Cancer Netw. 2018;16(5):518-24. https://doi.org/10.6004/jnccn.2018.7002

  27. Hu C, Hart SN, Gnanaolivu R, Huang H, Lee KY, Na J, et al. A population- based study of genes previously implicated in breast cancer. N Engl J Med. 2021;384(5):440-51. https://doi.org/10.1056/nejmoa2005936

  28. Weitzel JN, Lagos VI, Herzog JS, Judkins T, Hendrickson B, Ho JS, et al. Evidence for common ancestral origin of a recurring BRCA1 genomic rearrangement identified in high-risk hispanic families. Cancer Epidemiol Biomarkers Prev. 2007;16(8):1615-20. https://doi.org/10.1158/1055-9965. EPI-07-0198

  29. Vilalta A. Hispanic population: forgotten hereditary breast and ovarian cancer high risk group? J Investig Genomics. 2015;2(3):70-72. https://doi. org/10.15406/jig.2015.02.00028

  30. Vega A, Campos B, Bressac-de-Paillerets B, Bond PM, Janin N, Douglas FS, et al. The R71G BRCA1 is a founder Spanish mutation and leads to aberrant splicing of the transcript. Hum Mutat. 2001;17(6):520-1. https:// doi.org/10.1002/humu.1136

  31. Porchia LM, González-Mejia E, Calderilla-Barbosa L, Ordaz-Diaz N, Islas-Lugo F, Oldak J, et al. Common BRCA1 and BRCA2 mutations among Latin American breast cancer subjects: a meta-analysis. J Carcinog Mutagen. 2015;6(3):1000228. https://doi.org/10.4172/2157-2518.1000228

  32. Breast Cancer Association Consortium. Breast cancer risk genes — association analysis in more than 113,000 women. N Engl J Med. 2021;384(5):428-39. https://doi.org/10.1056/NEJMoa1913948

  33. Yi D, Xu L, Luo J, You X, Huang T, Zi Y, et al. Germline TP53 and MSH6 mutations implicated in sporadic triple-negative breast cancer (TNBC): a preliminary study. Hum Genomics. 2019;13(1):4. https://doi.org/10.1186/ s40246-018-0186-y

  34. Masciari S, Dillon DA, Rath M, Robson M, Weitzel JN, Balmana J, et al. Breast cancer phenotype in women with TP53 germline mutations: A Li-Fraumeni syndrome consortium effort. Breast Cancer Res Treat. 2012;133(3):1125-30. https://doi.org/10.1007/s10549-012-1993-9

  35. Blatnik A, Banjac M, Strojnik K, Hotujec S, Stegel V, Škerl P, et al. Prevalence of BRCA1/2 pathogenic variants in triple negative breast cancer patients stratified according to age at diagnosis. J Clin Oncol. 2020;38(15 suppl):e13677-e13677. https://doi.org/10.1200/jco.2020.38.15_suppl.e13677

  36. Wang YA, Jian JW, Hung CF, Peng HP, Yang CF, Skye HC, et al. Germline breast cancer susceptibility gene mutations and breast cancer outcomes. BMC Cancer. 2018;18(1):315. https://doi.org/10.1186/s12885-018-4229-5

  37. Fragoso-Ontiveros V, Velázquez-Aragón JA, Nuñez-Martínez PM, Mejía-Aguayo M, Vidal-Millán S, Pedroza-Torres A, et al. Mexican BRCA1 founder mutation: Shortening the gap in genetic assessment for hereditary breast and ovarian cancer patients. PLoS One. 2019;14(9). https://doi. org/10.1371/journal.pone.0222709




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2022;64

ARTíCULOS SIMILARES

CARGANDO ...