2025, Número 2
<< Anterior Siguiente >>
Rev Educ Bioquimica 2025; 44 (2)
Análisis de perfiles transcripcionales: ventajas y dificultades de su ejecución
Castro-Muñozledo F
Idioma: Español
Referencias bibliográficas: 61
Paginas: 82-98
Archivo PDF: 968.06 Kb.
RESUMEN
La transcriptómica es la caracterización y cuantificación del conjunto de todos los transcritos, codificantes y no codificantes, que se expresan en una célula en un momento determinado. Su importancia estriba en que podemos analizar todos los transcritos de manera integral, a la par de que hace posible comparar patrones de expresión entre diferentes poblaciones celulares, estados de desarrollo o respuesta a diferentes tratamientos. En este trabajo se revisan las principales estrategias utilizadas para explorar y comparar perfiles transcripcionales, desde mediados de la década de 1980 hasta la fecha, haciendo hincapié en las técnicas más utilizadas en la actualidad: los microarreglos y la secuenciación de RNA de nueva generación (RNA-Seq). Actualmente, los microarreglos se han empleado con mayor frecuencia debido a su costo menor y a la relativa facilidad para procesar la información; sin embargo, la RNA-Seq tiene una mayor capacidad para identificar genes no caracterizados o de muy baja expresión. Además, con base en nuestra experiencia desarrollada al comparar transcriptomas de células troncales o precursoras de la superficie ocular y de linajes diferenciados de diferentes especies y mediante diferentes metodologías, discutimos las dificultades que puede enfrentar un usuario al realizar una transcriptómica comparativa, lo que podrá dar al lector mejores herramientas para llevarla a cabo.
REFERENCIAS (EN ESTE ARTÍCULO)
Davis RL, Weintraub H, Lassar AB. Expressionof a Single Transfected cDNA ConvertsFibroblasts to Myoblasts. Cell 1987; 51:987-1000. DOI: 10.1016/0092-8674(87)90585-x.
Ng TB. Antifungal proteins and peptides ofleguminous and non-leguminous origins.Peptides 2004; 25:1215-22. DOI:10.1016/j.peptides.2004.03.012.
Diatchenko L, Lau YF, Campbell AP, ChenchikA, Moqadam, F, Huang B, Lukyanov S,Lukyanov K, Gurskaya N, Sverdlov ED, SiebertPD. Suppression subtractive hybridization: amethod for generating differentially regulated ortissue-specific cDNA probes and libraries. ProcNat Acad Sci USA 1996; 93:6025-30. DOI:10.1073/pnas.93.12.6025
Diatchenko L, Lukyanov S, Lau YF, Siebert PD.Suppression subtractive hybridization: aversatile method for identifying differentiallyexpressed genes. Methods Enzymol. 1999;303:349-80. DOI: 10.1016/s0076-6879(99)03022-0.
Adams MD, Kelley JM, Gocayne JD, DubnickM, Polymeropoulos MH, Xiao H, Merril CR,Wu A, Olde B, Moreno RF, Kerlavage AR, W.McCombie R, Venter JC. Complementary DNAsequencing: expressed sequence tags and humangenome project. Science 1991; 252:1651-6.DOI: 10.1126/science.2047873.
Liang P, Pardee AB. Differential display ofeukaryotic messenger RNA by means of thepolymerase chain reaction. Science 1992;257:967-71. DOI: 10.1126/science.1354393.
Wang X, Feuerstein GZ. The use of mRNAdifferential display for discovery of noveltherapeutic targets in cardiovascular disease.Cardiovasc Res 1997; 35:414-21. DOI:10.1016/s0008-6363(97)00169-7.
Li B, Sun M, He B, Yu J, Zhang YD, Zhang YL.Identification of differentially expressed genesin human uterine leiomyomas using differentialdisplay. Cell Res 2002; 12:39-45. DOI:10.1038/sj.cr.7290108.
Tuteja R, Tuteja N. Serial Analysis of GeneExpression: Applications in Human Studies.BioMed Res Int. 2004; 2004:113-20. DOI:10.1155/S1110724304308119.
Bumgarner R. Overview of DNA microarrays:types, applications, and their future. Curr ProtocMol Biol. 2013; Chapter 22:Unit 22.1. DOI:10.1002/0471142727.mb2201s101.
Tarca AL, Romero R, Draghici S. Analysis ofmicroarray experiments of gene expressionprofiling. Am J Obstet Gynecol 2006; 195:373-88.DOI: 10.1016/j.ajog.2006.07.001.
Schena M, Shalon D, Davis RW, Brown PO.Quantitative monitoring of gene expressionpatterns with a complementary DNAmicroarray. Science 1995; 270:467-70. DOI:10.1126/science.270.5235.467.
Lee KF, Yao YQ, Kwok KL, Xu JS, Yeung WS.Early developing embryos affect the geneexpression patterns in the mouse oviduct.Biochem Biophys Res Commun 2002; 292:564-70.DOI: 10.1006/bbrc.2002.6676.
Niemann H, Carnwath JW, Kues W. Applicationof DNA array technology to mammalianembryos. Theriogenology 2007; 68:S165-77.DOI: 10.1016/j.theriogenology.2007.05.041.
Miller MB, Tang YW. Basic concepts ofmicroarrays and potential applications inclinical microbiology. Clin Microbiol Rev 2009;22:611-33. DOI: 10.1128/CMR.00019-09.
Sadikovic B, Yoshimoto M, Al-Romaih K,Maire G, Zielenska M, Squire JA. In vitroanalysis of integrated global high resolutionDNA methylation profiling with genomicimbalance and gene expression in osteosarcoma.PLoS ONE 2008; 3:e2834. DOI:10.1371/journal.pone.0002834.
Almiñana C, Fazeli A. Exploring the applicationof high-throughput genomics technologies inthe field of maternal-embryo communication.Theriogenology 2012; 77:717-37. DOI:10.1016/j.theriogenology.2011.11.009.
Okamura H, Yamano H, Tsuda T, Morihiro J,Hirayama K, Nagano H. Development of aclinical microarray system for genetic analysisscreening. Pract Lab Med 2022; 33:e00306.DOI: 10.1016/j.plabm.2022.e00306.
Joseph SM, Sathidevi PS. An automated cDNAmicroarray image analysis for the determinationof gene expression ratios. IEEE/ACM TransComput Biol Bioinform 2023; 20:136-50. DOI:10.1109/TCBB.2021.3135650.
Sani A, Idrees Khan M, Shah S, Tian Y, Zha G,Fan L, Zhang Q, Cao C. Diagnosis andscreening of abnormal hemoglobins. Clin ChimActa 2024; 552:117685. DOI:10.1016/j.cca.2023.117685.
Raz T, Kapranov P, Lipson D, Letovsky S, MilosPM. Thompson JF. Protocol dependence ofsequencing-based gene expressionmeasurements. PLoS One 2011; 6:e19287. DOI:10.1371/journal.pone.0019287.
Harismendy O, Ng PC, Strausberg RL, Wang X,Stockwell TB, Beeson KY, Schork NJ, MurraySS, Topol EJ, Levy S, Frazer KA. Evaluation ofnext generation sequencing platforms forpopulation targeted sequencing studies. GenomeBiol 2009; 10(3):R32. DOI: 10.1186/gb-2009-10-3-r32.
23.Mandlik JS, Patil AS, Singh S. Next-GenerationSequencing (NGS): Platforms and Applications.J Pharm Bioallied Sci. 2024; 16(Suppl 1):S41-S45. DOI: 10.4103/jpbs.jpbs_838_23.
Wang Z, Gerstein M, Snyder M. RNA-Seq: arevolutionary tool for transcriptomics. NatureReviews Genetics. 2009; 10:57-63. DOI:10.1038/nrg2484.
Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S,Finnell R, Zettel M, Coleman P. Analysis ofgene expression in single live neurons. Proc NatlAcad Sci USA. 1992; 89:3010-14. DOI:10.1073/pnas.89.7.3010.
Tang F, Barbacioru C, Wang Y, Nordman,E, LeeC, Xu N, Wang X, Bodeau J, Tuch BB, SiddiquiA, Lao K, Surani MA. mRNA-Seq whole-transcriptome analysis of a single cell. NatMethods 2009; 6:377-82. DOI:10.1038/nmeth.1315.
Petropoulos S, Edsgärd D, Reinius B, Deng Q,Panula SP, Codeluppi S, Plaza Reyes A,Linnarsson S, Sandberg R, Lanner F. Single-Cell RNA-Seq Reveals Lineage and XChromosome Dynamics in HumanPreimplantation Embryos. Cell 2016; 165:1012-26.DOI: 10.1016/j.cell.2016.03.023.
Hwang B, Lee JH, Bang D. Single-cell RNAsequencing technologies and bioinformaticspipelines. Exp Mol Med 2018; 50:1-14. DOI:10.1038/s12276-018-0071-8.
Habib N, Avraham-Davidi I, Basu A, Burks T,Shekhar K, Hofree M, Choudhury SR, Aguet F,Gelfand E, Ardlie K, Weitz DA, Rozenblatt-Rosen O, Zhang F, Regev A. Massively parallelsingle-nucleus RNA-seq with DroNc-seq. NatMethods. 2017; 14:955-58. DOI:10.1038/nmeth.4407.
Lake BB, Ai R, Kaeser GE, Salathia NS, YungYC, Liu R, Wildberg A, Gao D, Fung HL, ChenS, Vijayaraghavan R, Wong J, Chen A, Sheng X,Kaper F, Shen R, Ronaghi M, Fan JB, Wang W,Chun J, Zhang K. Neuronal subtypes anddiversity revealed by single-nucleus RNA sequencing of the human brain. Science. 2016;352:1586-90. DOI: 10.1126/science.aaf1204.
Guo Y, Wang W, Ye K, He L, Ge Q, Huang Y,Zhao X. Single-Nucleus RNA-Seq: Open theEra of Great Navigation for FFPE Tissue. Int JMol Sci. 2023; 24:13744. DOI:10.3390/ijms241813744.
Lacar B, Linker SB, Jaeger BN, KrishnaswamiSR, Barron JJ, Kelder MJ, Parylak SL, PaquolaAC, Venepally P, Novotny M, O'Connor C,Fitzpatrick C, Erwin JA, Hsu JY, Husband D,McConnell MJ, Lasken R, Gage FH. NuclearRNA-seq of single neurons reveals molecularsignatures of activation. Nat Commun. 2016; 7:11022. DOI: 10.1038/ncomms11022.
Zhao, S, Fung-Leung, W-P, Bittner, A, Ngo, K,Liu, X. Comparison of RNA-Seq andMicroarray in Transcriptome Profiling ofActivated T Cells. PLoS ONE. 2014; 9:e78644.DOI: 10.1371/journal.pone.0078644.
Garber M, Grabherr M, Guttman M, Trapnell C.Computational methods for transcriptomeannotation and quantification using RNA-seq.Nat Methods 2011; 8:469-77. DOI:10.1038/nmeth.1613.
Rosati D, Palmieri M, Brunelli G, Morrione A,Iannelli F, Frullanti E, Giordano A. Differentialgene expression analysis pipelines andbioinformatic tools for the identification ofspecific biomarkers: A review. Comput StructBiotechnol J. 2024; 23:1154-68. DOI:10.1016/j.csbj.2024.02.018.
Rao MS, Van Vleet TR, Ciurlionis R, Buck WR,Mittelstadt SW, Blomme EAG, Liguori MJ.Comparison of RNA-Seq and Microarray GeneExpression Platforms for the ToxicogenomicEvaluation of Liver From Short-Term RatToxicity Studies. Front. Genet. 2019; 9:636.DOI: 10.3389/fgene.2018.00636.
Rai MF, Tycksen ED, Sandell LJ, Brophy RH.Advantages of RNA-seq compared to RNAmicroarrays for transcriptome profiling ofanterior cruciate ligament tears. J Orthop Res2018; 36:484-97. DOI: 10.1002/jor.23661.
Kogenaru S, Qing Y, Guo Y, Wang N. RNA-seqand microarray complement each other intranscriptome profiling. BMC Genomics. 2012;13:629. DOI: 10.1186/1471-2164-13-629.
Castro-Muñozledo F. The Mammalian LimbalStem Cell Niche: A Complex Interactionbetween Cells, Growth Factors andExtracellular Matrix. In: Biology in Stem CellNiche, Chapter 2. Stem Cell Biology andRegenerative Medicine Book Series. (Turksen,K., editor). Springer International PublishingSwitzerland. 2015; 23-56. DOI: 10.1007/978-3-319-2.
Kaplan N, Wang J, Wray B, Patel P, Yang W,Peng H, Lavker RM. Single-Cell RNATranscriptome Helps Define the Limbal/CornealEpithelial Stem/Early Transit Amplifying Cellsand How Autophagy Affects This Population.Invest Ophthalmol Vis Sci 2019; 60:3570-83.DOI: 10.1167/iovs.19-27656.
Adachi W, Ulanovsky H, Li Y, Norman B, DavisJ, Piatigorsky J. Serial analysis of geneexpression (SAGE) in the rat limbal and centralcorneal epithelium. Invest Ophthalmol Vis Sci.2006; 47:3801-10. DOI: 10.1167/iovs.06-0216.
Akinci MA, Turner H, Taveras M, Wolosin JM.Differential gene expression in the pig limbalside population: implications for stem cellcycling, replication, and survival. InvestOphthalmol Vis Sci. 2009; 50:5630-8. DOI:10.1167/iovs.09-3791.
Ortiz-Melo MT, Garcia-Murillo MJ, Salazar-Rojas VM, Campos JE, Castro-Muñozledo F.Transcriptional profiles along cell programminginto corneal epithelial differentiation. Exp EyeRes. 2021; 202:108302. DOI:10.1016/j.exer.2020.108302.
Castro-Muñozledo F. Development of aspontaneous permanent cell line of rabbitcorneal epithelial cells that undergoes sequentialstages of differentiation in cell culture. J CellSci. 1994; 107:2343-51. DOI:10.1242/jcs.107.8.2343.
Okyere J, Oppon E, Dzidzienyo D, Sharma L,Ball G. Cross-species gene expression analysisof species specific differences in the preclinicalassessment of pharmaceutical compounds.PLoS One. 2014; 9:e96853. DOI:10.1371/journal.pone.0096853.
Wang X, Yang L, Wang YC, Xu ZR, Feng Y,Zhang J, Wang Y, Xu CR. Comparative analysisof cell lineage differentiation duringhepatogenesis in humans and mice at the single-cell transcriptome level. Cell Res 2020;30:1109-26. DOI: 10.1038/s41422-020-0378-6.
Sonam S, Bangru S, Perry KJ, Chembazhi UV,Kalsotra A, Henry JJ. Cellular and molecularprofiles of larval and adult Xenopus cornealepithelia resolved at the single-cell level. DevBiol. 2022; 491:13-30. DOI:10.1016/j.ydbio.2022.08.007.
Notara M, Shortt AJ, O'Callaghan AR, DanielsJT. The impact of age on the physical andcellular properties of the human limbal stem cellniche. Age 2013; 35:289-300. DOI:10.1007/s11357-011-9359-5.
Douvaras P, Webb S, Whitaker DA, Dorà N, HillRE, Dorin JR, West JD. Rare corneal clones inmice suggest an age-related decrease of stemcell activity and support the limbal epithelialstem cell hypothesis. Stem Cell Res 2012;8:109-19. DOI: 10.1016/j.scr.2011.08.007.
López-Paniagua M, Nieto-Miguel T, de la MataA, Dziasko M, Galindo S, Rey E, Herreras JM,Corrales RM, Daniels JT, Calonge M.Comparison of functional limbal epithelial stemcell isolation methods. Exp. Eye Res 2016;146:83-94. DOI: 10.1016/j.exer.2015.12.002.
Guo ZH, Zeng YM, Lin JS. Dynamicspatiotemporal expression pattern of limbalstem cell putative biomarkers during mousedevelopment. Exp. Eye Res 2020; 192:107915.DOI: 10.1016/j.exer.2020.107915.
Wu YF, Chang NW, Chu LA, Liu HY, Zhou YX,Pai YL, Yu YS, Kuan CH, Wu YC, Lin SJ, TanHY. Single-cell transcriptomics reveals cellularheterogeneity and complex cell-cellcommunication networks in the mouse cornea.Invest Ophthalmol Vis Sci. 2023; 64:5. DOI:10.1167/iovs.64.13.5.
Schiffman JS, D'Avino AR, Prieto T, Pang Y,Fan Y, Rajagopalan S, Potenski C, Hara T, SuvàML, Gawad C, Landau DA. Definingheritability, plasticity, and transition dynamicsof cellular phenotypes in somatic evolution. NatGenet. 2024; 56:2174-84. DOI:10.1038/s41588-024-01920-6.
Shiraki T, Kondo S, Katayama S, Waki K,Kasukawa T, Kawaji H, Kodzius R, Watahiki A,Nakamura M, Arakawa T, Fukuda S, Sasaki D,Podhajska A, Harbers M, Kawai J, Carninci P,Hayashizaki Y. Cap analysis gene expression forhigh-throughput analysis of transcriptionalstarting point and identification of promoterusage. Proc Natl Acad Sci USA. 2003; 100:15776-81. DOI: 10.1073/pnas.2136655100.
Zhou D, Rao MS, Walker R, Khrebtukova I,Haudenschild CD, Miura T, Decola S, VermaasE, Moon K, Vasicek TJ. Massively parallelsignature sequencing. Methods Mol Biol. 2006;331:285-311. DOI: 10.1385/1-59745-046-4:285.
Veréb Z, Albert R, Póliska S, Olstad OK, AkhtarS, Moe MC, Petrovski G. Comparison ofupstream regulators in human ex vivo culturedcornea limbal epithelial stem cells anddifferentiated corneal epithelial cells. BMCGenomics. 2013; 14:900. DOI: 10.1186/1471-2164-14-900.
Gallagher C, Clarke C, Aherne ST, KatikireddyKR, Doolan P, Lynch V, Shaw S, Bobart-HoneA, Murphy C, Clynes M, Power W, O'SullivanF.Comparative transcriptomic analysis ofcultivated limbal epithelium and donor cornealtissue reveals altered wound healing geneexpression. Invest Ophthalmol Vis Sci. 2014;55:5795-805. DOI: 10.1167/iovs.14-14664.
Li DQ, Kim S, Li JM, Gao Q, Choi J, Bian F, HuJ, Zhang Y, Li J, Lu R, Li Y, Pflugfelder SC,Miao H, Chen R. Single-cell transcriptomicsidentifies limbal stem cell population and celltypes mapping its differentiation trajectory inlimbal basal epithelium of human cornea. OculSurf. 2021; 20:20-32. DOI:10.1016/j.jtos.2020.12.004.
1.Various Authors. Transcriptome Analysis (M.Blumenberg editor). IntechOpen. eBook (PDF)ISBN978-1-78985-263-9. 2019;108 pages.DOI: 10.5772/intechopen.77860.
2.Various Authors. Transcriptome Data Analysis.Methods and Protocols. (Yejun Wang & Ming-aSun, editors). From the series: Methods inMolecular Biology Vol 1751. 2018: HumanaPress NY.DOI: 10.1007/978-1-4939-7710-9.
3.Anamika K, Verma S, Jere A, Desai, A.Transcriptomic Profiling Using Next Gener-ation Sequencing - Advances, Advantages, andChallenges. Published in: Next GenerationSequencing - Advances, Applications andChallenges. (Kulski, JK editor). InTech. 2016DOI: 10.5772/61789.