medigraphic.com
ENGLISH

Revista de Educación Bioquímica

  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2025, Número 2

<< Anterior Siguiente >>

Rev Educ Bioquimica 2025; 44 (2)


Modificaciones en las histonas: su importancia en la identificación y reparación del daño al DNA

González-Gutiérrez AM, Ortiz-Muñiz AR, García-Rodríguez MC, Cortés-Barberena E
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 76
Paginas: 70-81
Archivo PDF: 612.95 Kb.


PALABRAS CLAVE

daño al DNA, gH2AX, mecanismos de reparación, modificación de histonas, respuesta al daño del DNA, expresión génica.

RESUMEN

El propósito de esta revisión es presentar información relevante respecto a las principales modificaciones de histonas que intervienen en la detección y reparación del material genético dañado (conocida como respuesta ante el daño al DNA, (DDR)). La integridad genómica es vital para el bienestar celular. Las células han desarrollado sistemas de revisión y mantenimiento para garantizar la protección adecuada de la información genética. El genoma nuclear se organiza en un complejo de histonas y ácido desoxirribonucleico (DNA) llamado nucleosoma; la adaptabilidad de esta estructura permite el acceso de las proteínas necesarias para efectuar procesos biológicos como la transcripción, duplicación, y reparación del DNA. Las proteínas histonas pueden presentar modificaciones químicas que por sí solas o en combinación con otras, proporcionan resultados biológicos específicos; a esto se le conoce como 'código de histonas'. En años recientes, se ha incrementado el estudio de las modificaciones postraduccionales (PTMs) en las proteínas histonas y su conexión con la red de vías DDR.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Chatterjee N, Walker GC. Mechanisms of DNAdamage, repair and mutagenesis. Environ MolMutagen. 2017; 58(5):235-63.

  2. Brown JS, Jackson SP. Ubiquitylation,neddylation and the DNA damage response. OpenBiol. 2015; 5(4):1-21.

  3. Liu Y, Li Y, Lu X. Regulators in the DNAdamage response. Arch Biochem Biophys. 2016;594:18-25.

  4. Koyama M, Kurumizaka H. Structural diversityof the nucleosome. J Biochem (Tokyo). 2018;163(2):85-95.

  5. Corujo D, Buschbeck M. Post-translationalmodifications of H2A histone variants and their rolein cancer. Cancers. 2018; 10(3):1-25.

  6. Vlijm R, Lee M, Jan L, Lusser A, Dekker C,Dekker NH. Nucleosome Assembly DynamicsInvolve Spontaneous Fluctuations in the Handed-ness of Tetrasomes. Cell. 2015; 10(2):216-25.

  7. Prado F, Jimeno-González S, Reyes JC. Histoneavailability as a strategy to control gene expression.RNA Biol. 2016; 14(3):281-6.

  8. Cheema MS, Ausió J. The structural determi-nants behind the epigenetic role of histone variants.Genes. 2015; 6(3):685-713.

  9. Govaert E, Van Steendam K, Scheerlinck E,Vossaert L, Meert P, Stella M, et al. Extractinghistones for the specific purpose of label-free MS.Proteomics. 2016; 16(23):2937-44.

  10. Jenuwein T, Allis CD. Translating the histonecode. Science. 2001; 293(5532):1074-80.

  11. Sneppen K, Dodd IB. A simple histone codeopens many paths to epigenetics. PLoS ComputBiol. 2012; 8(8):1-10.

  12. Oweis W, Padala P, Hassouna F, Cohen-KfirE, Gibbs DR, Todd EA, et al. Trans-binding mech-anism of ubiquitin-like protein activation revealed by a UBA5-UFM1 complex. Cell Rep. 2016; 16(12):3113-20.

  13. Wei Y, Xu X. UFMylation: A unique &fashionable modification for life. GPB. 2016;14(3):140-6.

  14. Roque A, Ponte I, Suau P. Post-translationalmodifications of the intrinsically disorderedterminal domains of histone H1: effects onsecondary structure and chromatin dynamics.Chromosoma. 2017; 126(1):83-91.

  15. Izzo A, Schneider R. The role of linker histoneH1 modifications in the regulation of geneexpression and chromatin dynamics. BiochimBiophys Acta BBA-Gene Regul Mech. 2016;1859(3):486-95.

  16. Bönisch C, Hake SB. Histone H2A variants innucleosomes and chromatin: more or less stable?Nucleic Acids Res. 2012; 40(21):10719-41.

  17. Shaytán AK, Landsman D, Panchenko AR.Nucleosome adaptability conferred by sequence andstructural variations in histone H2A-H2B dimers.Curr Opin Struct Biol. 2015; 32:48-57.

  18. Phillips EON, Gunjan A. Histone variants:The unsung guardians of the genome. DNA Repair.2022; 112:1-41.

  19. Dhahri H, Saintilnord WN, Chandler D,Fondufe-Mittendorf YN. Beyond the UsualSuspects: Examining the Role of UnderstudiedHistone Variants in Breast Cancer. Int J Mol Sci.2024; 25(12):1-24.

  20. Osakabe A, Molaro A. Histone renegades:Unusual H2A histone variants in plants and animals.Semin Cell Dev Biol. 2023; 15(135):35-42.

  21. Jiang D, Borg M, Lorković ZJ, MontgomerySA, Osakabe A, Yelagandula R, et al. The evolutionand functional divergence of the histone H2B family in plants. PLoS Genet. 2020; 16(7):1-22.

  22. Raman P, Rominger MC, Young JM, MolaroA, Tsukiyama T, Malik HS. Novel Classes andEvolutionary Turnover of Histone H2B Variants inthe Mammalian Germline. Mol Biol Evol. 2022;39(2):1-19.

  23. Lai PM, Gong X, Chan KM. Roles of histoneH2B, H3 and H4 variants in cancer developmentand prognosis. Int J Mol Sci. 2024; 25(17):1-33.

  24. Delaney K, Weiss N, Almouzni G. The cell-cycle choreography of H3 variants shapes thegenome. Mol Cell. 2023; 83(21):3773-86.

  25. Trovato M, Patil V, Gehre M, Noh KM.Histone Variant H3.3 Mutations in Defining theChromatin Function in Mammals. Cells. 2020;9(12):1-22.

  26. Ray-Gallet D, Almouzni G. H3–H4 histonechaperones and cancer. Curr Opin Genet Dev. 2022;73:1-8.

  27. Talbert PB, Henikoff S. Histone variants at aglance. J Cell Sci. 2021; 134(6):1-10.

  28. Chen D, Jin C. Histone variants inenvironmental-stress-induced DNA damage repair.Mutat Res Mutat Res. 2019; 780:55-60.

  29. Ghiraldini FG, Filipescu, Dan, Bernstein,Emily. Solid tumours hijack the histone variantnetwork. Nat Rev Cancer. 2021; 21(4):257-75.

  30. Rossetto D, Avvakumov N, Côté J. Histonephosphorylation A chromatin modification involvedin diverse nuclear events. Epigenetics. 2012;7(10):1098-108.

  31. Song J, Wang H, Wang J, Leier A, Marquez-Lago T, Yang B, et al. PhosphoPredict: Abioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites byintegrating heterogeneous feature selection. SciRep. 2017; 7(6862):1-19.

  32. Talasz H, Helliger W, Puschendorf B, LindnerH.In Vivo Phosphorylation of Histone H1 Variantsduring the Cell Cycle. Biochemistry. 1996;35(6):1761-7.

  33. Hunt CR, Ramnarain D, Horikoshi N, IyengarP, Pandita RK, Shay JW, et al. Histone Modi-fications and DNA Double-Strand Break Repairafter Exposure to Ionizing Radiations. Radiat Res.2013; 179(4):383-92.

  34. Lai SJ, Tu IF, Wu WL, Yang JT, Luk LYP,Lai MC, et al. Site-specific His/Asp phospho-proteomic analysis of prokaryotes reveals putativetargets for drug resistance. BMC Microbiol. 2017; 17(123):1-10.

  35. Andrés M, García-Gomis D, Ponte I, Suau P,Roque A. Histone H1 Post-Translational Modi-fications: Update and Future Perspectives. Int J MolSci. 2020; 21(16):1-23.

  36. Xie A, Odate S, Chandramouly G, Scully R.H2AX post-translational modifications in theionizing radiation response and homologous recom-bination. Cell Cycle. 2010; 9(17):3602-10.

  37. Salzano M, Sanz-García M, Monsalve DM,Moura DS, Lazo PA. VRK1 chromatin kinase phos-phorylates H2AX and is required for foci formationinduced by DNA damage. Epigenetics. 2015;10(5):373-83.

  38. Cook PJ, Ju BG, Telese F, Wang X, Glass CK,Rosenfeld MG. Tyrosine dephosphorylation ofH2AX modulates apoptosis and survival decisions.Nature. 2009; 458(7238):591-6.

  39. Fernández-Capetillo O, Allis CD,Nussenzweig A. Phosphorylation of histone H2B atDNA double-strand breaks. J Exp Med. 2004;199(12):1671-7.

  40. Rossetto D, Truman AW, Kron SJ, Côté J.Epigenetic modifications in double strand breakDNA damage signaling and repair. Clin Cancer Res.2010; 16(18):4543-52.

  41. Tjeertes JV, Miller KM, Jackson SP. Screenfor DNA-damage-responsive histone modificationsidentifies H3K9Ac and H3K56Ac in human cells.EMBO J. 2009; 28(13):1878-89.

  42. Lee JH, Kang BH, Jang H, Kim TW, Choi J,Kwak S, et al. AKT phosphorylates H3-threonine45 to facilitate termination of gene transcription inresponse to DNA damage. Nucleic Acids Res. 2015;43(9):4505-16.

  43. Singh RK, Kabbaj MHM, Paik J, Gunjan A.Histone levels are regulated by phosphorylation andubiquitylation dependent proteolysis. Nat Cell Biol.2009; 11(8):925-33.

  44. Hossain MB, Shifat R, Johnson DG, BedfordMT, Gabrusiewicz KR, Cortes-Santiago N, et al.TIE2-mediated tyrosine phosphorylation of H4regulates DNA damage response by recruitingABL1. Sci Adv. 2016; 2(4):1-11.

  45. Millan-Zambrano G, Santos-Rosa H, PudduF, Robson SC, Jackson SP, Kouzarides T.Phosphorylation of Histone H4T80 triggers DNAdamage checkpoint recovery. Mol Cell. 2018;72(4):625-35.

  46. Gong F, Miller KM. Histone methylation andthe DNA damage response. Mutat Res. 2019;780:37-47.

  47. Taylor-Papadimitriou J, Burchell JM. HistoneMethylases and Demethylases Regulating Antag-onistic Methyl Marks: Changes Occurring inCancer. Cells. 2022; 11(7):1-26.

  48. Wu X nan, Shi T tao, He Y hui, Wang F fei,Sang R, Ding J cheng, et al. Methylation oftranscription factor YY2 regulates its transcriptionalactivity and cell proliferation. Cell Discov. 2017;3:1-22.

  49. Patel DJ. A structural perspective on readoutof epigenetic histone and DNA methylation marks.Cold Spring Harb Perspect Biol. 2016; 8(3):1-47.

  50. Karagianni P, Tzioufas AG. Epigeneticperspectives on systemic autoimmune disease. JAutoinmmunity. 2019; 104:1-10.

  51. Molina-Serrano D, Kyriakou D, Kirmizis A.Histone modifications as an intersection betweendiet and longevity. Front Genet. 2019; 10(192):1-18.

  52. Chen Y, Zhu WG. Biological function andregulation of histone and non-histone lysinemethylation in response to DNA damage. ActaBiochim Biophys Sin. 2016; 48(7):603-16.

  53. Peña PV, Hom RA, Hung T, Lin H, Kuo AJ,Wong RPC, et al. Histone H3K4me3 binding isrequired for the DNA repair and apoptotic activitiesof ING1 tumor suppressor. J Mol Biol. 2008;380(2):303-12.

  54. Williamson EA, Wray JW, Bansal P, HromasR.Overview for the Histone Codes for DNA Repair.Prog Mol Biol Transl Sci. 2012; 110:207-27.

  55. Giannattasio M, Lazzaro F, Plevani P, Muzi-Falconi M. The DNA damage checkpoint responserequires histone H2B ubiquitination by Rad6-Bre1and H3 methylation by Dot1. J Biol Chem. 2005;280:9879-86.

  56. Ma Z, Wang W, Wang S, Zhao X, Ma Y, WuC, et al. Symmetrical dimethylation of H4R3: Abridge linking DNA damage and repair upon oxi-dative stress. Redox Biol. 2020; 37(101653):1-12.

  57. Jacquet K, Fradet-Turcotte A, Avvakumov N,Lambert JP, Roques C, Pandita RK, et al. The TIP60complex regulates bivalent chromatin recognitionby 53BP1 through direct H4K20me binding andH2AK15 acetylation. Mol Cell. 2016; 62(3):409-21.

  58. Botuyan MV, Lee J, Ward IM, Kim JE,Thompson JR, Chen J, et al. Structural basis for themethylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell. 2006; 127(7):1361-73.

  59. Shan W, Jiang Y, Yu H, Huang Q, Liu L, GuoX, et al. HDAC2 overexpression correlates withaggressive clinicopathological features and DNA-damage response pathway of breast cancer. Am JCancer Res. 2017; 7(5):1213-26.

  60. Li Y, Li Z, Dong L, Tang M, Zhang P, ZhangC, et al. Histone H1 acetylation at lysine 85regulates chromatin condensation and genomestability upon DNA damage. Nucleic Acids Res.2018; 46(15):7716-30.

  61. Li XM, Zhao ZY, Yu X, Xia QD, Zhou P,Wang SG, et al. Exploiting E3 ubiquitin ligases toreeducate the tumor microenvironment for cancertherapy. Exp Hematol Oncol. 2023; 12(1):34.

  62. Rajsbaum R, García-Sastre A. Unanchoredubiquitin in virus uncoating. Science. 2014;346(6208):427-8.

  63. Zhang S, Zhang M, Jing Y, Yin X, Ma P,Zhang Z, et al. Deubiquitinase USP13 dictatesMCL1 stability and sensitivity to BH3 mimeticinhibitors. 2018; 9(1):1-12.

  64. Thorslund T, Ripplinger A, Hoffmann S, WildT, Uckelmann M, Villumsen B, et al. Histone H1couples initiation and amplification of ubiquitinsignalling after DNA damage. Nature. 2015;527(7578):389-93.

  65. Uckelmann M, Sixma TK. Histoneubiquitination in the DNA damage response. DNARepair. 2017; 56:92-101.

  66. Dantuma NP, van Attikum H. Spatiotemporalregulation of posttranslational modifications in theDNA damage response. EMBO J. 2016; 35(1):6-23.

  67. Gatti M, Pinato S, Maiolica A, Rocchio F,Prato MG, Aebersold R, et al. RNF168 promotesnoncanonical K27 ubiquitination to signal DNAdamage. Cell Rep. 2015; 10(2):226-38.

  68. Smeenk G, van Attikum H. The chromatin re-sponse to DNA breaks: Leaving a mark on genomeintegrity. Annu Rev Biochem. 2013; 82:55-80.

  69. Wright DE, Wang CY, Kao CF. Flickin’ theubiquitin switch: The role of H2B ubiquitylation indevelopment. Epigenetics. 2011; 6(10):1165-75.

  70. Palazzo L, Daniels CM, Nettleship JE,Rahman N, McPherson RL, Ong SE, et al. ENPP1processes protein ADP-ribosylation in vitro. FEBSJ.2016; 283(18):3371-88.

  71. Zha JJ, Tang Y, Wang YL. Role of mono‑ADP‑ribosylation histone modification (Review).Exp Ther Med. 2021; 21(6):1-8.

  72. Huang H, Sabari BR, Garcia BA, Allis CD,Zhao Y. SnapShot: Histone modifications. Cell.2014; 159(2):458-458.e1.

  73. Jiang X, Xu Y, Price BD. Acetylation ofH2AX on lysine 36 plays a key role in the DNAdouble-strand break repair pathway. FEBS Lett.2010; 584(13):2926-30.

  74. Clouaire T, Rocher V, Lashgari A, Arnould C,Aguirrebengoa M, Biernacka A, et al. Comprehen-sive mapping of histone modifications at DNA double-strand breaks deciphers repair pathway chro- matin signatures. Mol Cell. 2018; 72(2):250-62.

  75. Browman GD, Poirier MG. Post-translationalmodifications of histones that influence nucleosomedynamics. Chem Rev. 2014; 115(6):2274-95.

  76. Chen CC, Carson JJ, Feser J, Tamburini B,Zabaronick S, Linger J, et al. Acetylated lysine 56on histone H3 drives chromatin assembly afterrepair, signaling for the completion of repair. Cell.2008; 134(2):231-43.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Educ Bioquimica. 2025;44

ARTíCULOS SIMILARES

CARGANDO ...