Entrar/Registro  
INICIO ENGLISH
 
Gaceta Médica de México
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Gaceta Médica de México >Año 2011, No. 1


Muñoz SRB, Albores MA
Polimorfismos y exposición a xenobióticos en el asma infantil
Gac Med Mex 2011; 147 (1)

Idioma: Español
Referencias bibliográficas: 123
Paginas: 38-47
Archivo PDF: 128.36 Kb.


Texto completo




RESUMEN

El desarrollo industrial en México ha generado un aumento considerable de tóxicos en la atmósfera. Algunos de estos compuestos como el ozono o el humo de tabaco están relacionados con la severidad de ciertas enfermedades respiratorias como el asma. El asma afecta principalmente a niños y adolescentes en edad escolar. Ciertos polimorfismos genéticos están relacionados con la aparición y la severidad de esta enfermedad. El análisis de estas variaciones genéticas en diferentes poblaciones ha permitido proponer candidatos a biomarcadores de predisposición para su detección y control tempranos. Adicionalmente, ha abierto posibilidades de estudio en cuanto al papel de mecanismos moleculares como el metabolismo de xenobióticos en el desarrollo de la enfermedad. El conocimiento de estos polimorfismos en la población infantil mexicana y su relación con el ambiente constituye un primer paso en el desarrollo de estrategias dirigidas a ubicar grupos susceptibles. Este artículo revisa algunos polimorfismos genéticos relacionados con la respuesta alérgica del asma y su relación con la exposición a compuestos tóxicos.


Palabras clave: Asma, Polimorfismos, Exposición ambiental, Xenobióticos.


REFERENCIAS

  1. Hernández R. Asma Bronquial. Boletín de Práctica Médica Efectiva. 2006;01:1-6.

  2. Rodríguez-Medina R, Gasca-Bausa MR, Espinosa F, Zamora-Limón E. Incidencia y prevalencia del asma bronquial en pediatría. Revista de Alergia de México. 1998;55:126-9.

  3. Mark JD. Pediatric asthma: an integrative approach to care. Nutr Clin Pract. 2009;24:578-88.

  4. Vercelli D. Discovering susceptibility genes for asthma and allergy. Nat Rev Immunol. 2008;8:169-82.

  5. McLeish S, Turner SW. Gene-environment interactions in asthma. Arch Dis Child. 2007;92:1032-5.

  6. López-Pérez G, Morfín-Maciel BM, Huerta-López J, et al. Leobardo, Vargas Florencia. Prevalencia de las enfermedades alérgicas en la Ciudad de México. Revista Alergia México. 2009;56:72-9.

  7. Turner SW. Genetic predictors of response to therapy in childhood asthma. Mol Diagn Ther. 2009;13:127-35.

  8. Amirzargar AA, Movahedi M, Rezaei N, et al. Polymorphisms in IL4 and iLARA confer susceptibility to asthma. J Investig Allergol Clin Immunol. 2009;19:433-8.

  9. Nagarkatti R, Kumar R, Sharma SK, Ghosh B. Association of IL4 gene polymorphisms with asthma in North Indians. Int Arch Allergy Immunol. 2004;134:206-12.

  10. Takabayashi A, Ihara K, Sasaki Y, et al. Childhood atopic asthma: positive association with a polymorphism of IL-4 receptor alpha gene but not with that of IL-4 promoter or Fc epsilon receptor I beta gene. Exp Clin Immunogenet. 2000;17:63-70.

  11. Lyon H, Lange C, Lake S, et al. IL10 gene polymorphisms are associated with asthma phenotypes in children. Genet Epidemiol. 2004;26: 155-65.

  12. Hunninghake GM, Soto-Quiros ME, Lasky-Su J, et al. Dust mite exposure modifies the effect of functional IL10 polymorphisms on allergy and asthma exacerbations. J Allergy Clin Immunol. 2008;122:93-8, 98 e1-5.

  13. Urry Z, Xystrakis E, Hawrylowicz CM. Interleukin-10-secreting regulatory T cells in allergy and asthma. Curr Allergy Asthma Rep. 2006;6: 363-71.

  14. Xystrakis E, Kusumakar S, Boswell S, et al. Reversing the defective induction of IL-10-secreting regulatory T cells in glucocorticoid-resistant asthma patients. J Clin Invest. 2006;116:146-55.

  15. Rouse RL, Boudreaux MJ, Penn AL. In utero environmental tobacco smoke exposure alters gene expression in lungs of adult BALB/c mice. Environ Health Perspect. 2007;115:1757-66.

  16. St-Laurent J, Boulet LP, Bissonnette E. Cigarette smoke differently alters normal and ovalbumin-sensitized bronchial epithelial cells from rat. J Asthma. 2009;46:577-81.

  17. Wang L, Joad JP, Zhong C, Pinkerton KE. Effects of environmental tobacco smoke exposure on pulmonary immune response in infant monkeys. J Allergy Clin Immunol. 2008;122:400-6, 406 e1-5.

  18. Oh SS, Chang SC, Cai L, et al. Single nucleotide polymorphisms of eight inflammation-related genes and their associations with smoking-related cancers. Int J Cancer. 2010;127(9):2169-82.

  19. Vercelli D. Genetics of IL-13 and functional relevance of IL-13 variants. Curr Opin Allergy Clin Immunol. 2002;2:389-93.

  20. Wills-Karp M. Interleukin-13 in asthma pathogenesis. Immunol Rev. 2004;202:175-90.

  21. Jiang H, Harris MB, Rothman P. IL-4/IL-13 signaling beyond JAK/STAT. J Allergy Clin Immunol. 2000;105:1063-70.

  22. Cooper PR, Poll CT, Barnes PJ, Sturton RG. Involvement of IL-13 in tobacco smoke induced changes in the structure and function of rat intrapulmonary airways. Am J Respir Cell Mol Biol. 2010;43(2):220-6.

  23. Pourazar J, Frew AJ, Blomberg A, et al. Diesel exhaust exposure enhances the expression of IL-13 in the bronchial epithelium of healthy subjects. Respir Med. 2004;98:821-5.

  24. Sadeghnejad A, Karmaus W, Arshad SH, Kurukulaaratchy R, Huebner M, Ewart S. IL13 gene polymorphisms modify the effect of exposure to tobacco smoke on persistent wheeze and asthma in childhood, a longitudinal study. Respir Res. 2008;9:2.

  25. Sadeghnejad A, Meyers DA, Bottai M, Sterling DA, Bleecker ER, Ohar JA. IL13 promoter polymorphism 1112C/T modulates the adverse effect of tobacco smoking on lung function. Am J Respir Crit Care Med. 2007;176:748-52.

  26. Van der Pouw Kraan TC, Van Veen A, Boeije LC, et al. An IL-13 promoter polymorphism associated with increased risk of allergic asthma. Genes Immun. 1999;1:61-5.

  27. He R, Geha RS. Thymic stromal lymphopoietin. Ann N Y Acad Sci. 2010;1183:13-24.

  28. Zhang Z, Hener P, Frossard N, et al. Thymic stromal lymphopoietin overproduced by keratinocytes in mouse skin aggravates experimental asthma. Proc Natl Acad Sci USA. 2009;106:1536-41.

  29. Sebastian K, Borowski A, Kuepper M, Friedrich K. Signal transduction around thymic stromal lymphopoietin (TSLP) in atopic asthma. Cell Commun Signal. 2008;6:5.

  30. Wohlmann A, Sebastian K, Borowski A, Krause S, Friedrich K. Signal transduction by the atopy-associated human thymic stromal lymphopoietin (TSLP) receptor depends on Janus kinase function. Biol Chem. 2010;391(2-3):181-6.

  31. Rochman Y, Leonard WJ. Thymic stromal lymphopoietin: a new cytokine in asthma. Curr Opin Pharmacol. 2008;8:249-54.

  32. Zhou B, Comeau MR, De Smedt T, et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol. 2005;6:1047-53.

  33. Headley MB, Zhou B, Shih WX, Aye T, Comeau MR, Ziegler SF. TSLP conditions the lung immune environment for the generation of pathogenic innate and antigen-specific adaptive immune responses. J Immunol. 2009;182:1641-7.

  34. Nakamura Y, Miyata M, Ohba T, et al. Cigarette smoke extract induces thymic stromal lymphopoietin expression, leading to T(H)2-type immune responses and airway inflammation. J Allergy Clin Immunol. 2008;122:1208-14.

  35. Shigeno T, Katakuse M, Fujita T, Mukoyama Y, Watanabe H. Phthalate ester-induced thymic stromal lymphopoietin mediates allergic dermatitis in mice. Immunology. 2009;128:e849-57.

  36. He JQ, Hallstrand TS, Knight D, et al. A thymic stromal lymphopoietin gene variant is associated with asthma and airway hyperresponsiveness. J Allergy Clin Immunol. 2009;124:222-9.

  37. Hunninghake GM, Lasky-Su J, Soto-Quiros ME, et al. Sex-stratified linkage analysis identifies a female-specific locus for IgE to cockroach in Costa Ricans. Am J Respir Crit Care Med. 2008;177:830-6.

  38. Harada M, Hirota T, Jodo AI, et al. Functional analysis of the thymic stromal lymphopoietin variants in human bronchial epithelial cells. Am J Respir Cell Mol Biol. 2009;40:368-74.

  39. Berry M, Brightling C, Pavord I, Wardlaw A. TNF-alpha in asthma. Curr Opin Pharmacol. 2007;7:279-82.

  40. Ying S, Robinson DS, Varney V, et al. TNF alpha mRNA expression in allergic inflammation. Clin Exp Allergy. 1991;21:745-50.

  41. Huber M, Beutler B, Keppler D. Tumor necrosis factor alpha stimulates leukotriene production in vivo. Eur J Immunol. 1988;18:2085-8.

  42. Albuquerque RV, Hayden CM, Palmer LJ, et al. Association of polymorphisms within the tumour necrosis factor (TNF) genes and childhood asthma. Clin Exp Allergy. 1998;28:578-84.

  43. Aoki T, Hirota T, Tamari M, et al. An association between asthma and TNF-308G/A polymorphism: meta-analysis. J Hum Genet. 2006;51: 677-85.

  44. Aytekin C, Dogu F, Ikinciogullari A, et al. TGF-Beta1-915G/C and TNFalpha- 308G/A polymorphisms in children with asthma. Tuberk Toraks. 2009;57:62-7.

  45. Di Somma C, Charron D, Deichmann K, Buono C, Ruffilli A. Atopic asthma and TNF-308 alleles: linkage disequilibrium and association analyses. Hum Immunol. 2003;64:359-65.

  46. Gupta V, Sarin BC, Changotra H, Sehajpal PK. Association of G-308A TNF-alpha polymorphism with bronchial asthma in a North Indian population. J Asthma. 2005;42:839-41.

  47. Hong SJ, Kim HB, Kang MJ, et al. TNF-alpha (-308 G/A) and CD14 (-159T/C) polymorphisms in the bronchial responsiveness of Korean children with asthma. J Allergy Clin Immunol. 2007;119:398-404.

  48. Kamali-Sarvestani E, Ghayomi MA, Nekoee A. Association of TNF-alpha -308 G/A and IL-4 -589 C/T gene promoter polymorphisms with asthma susceptibility in the south of Iran. J Investig Allergol Clin Immunol. 2007;17:361-6.

  49. Tan EC, Lee BW, Tay AW, Chew FT, Tay AH. Asthma and TNF variants in Chinese and Malays. Allergy. 1999;54:402-3.

  50. Wu H, Romieu I, Sienra-Monge JJ, et al. Parental smoking modifies the relation between genetic variation in tumor necrosis factor-alpha (TNF) and childhood asthma. Environ Health Perspect. 2007;115:616-22.

  51. Beghe B, Padoan M, Moss CT, et al. Lack of association of HLA class I genes and TNF alpha-308 polymorphism in toluene diisocyanate-induced asthma. Allergy. 2004;59:61-4.

  52. Lee J, Oh PS, Lim KT. Allergy-related cytokines (IL-4 and TNF-alpha) are induced by Di(2-ethylhexyl) phthalate and attenuated by plant-originated glycoprotein (75 kDa) in HMC-1 cells. Environ Toxicol. 2010. [Epub ahead of print]

  53. Brightling C, Berry M, Amrani Y. Targeting TNF-alpha: a novel therapeutic approach for asthma. J Allergy Clin Immunol. 2008;121:5-10; quiz 11-2.

  54. Huang SC, Wu WJ, Sun HL, et al. Association of a lymphotoxin-alpha gene polymorphism and atopic asthma in Taiwanese children. Pediatr Neonatol. 2008;49:30-4.

  55. Wang TN, Chen WY, Wang TH, Chen CJ, Huang LY, Ko YC. Gene-gene synergistic effect on atopic asthma: tumour necrosis factor-alpha-308 and lymphotoxin-alpha-NcoI in Taiwan’s children. Clin Exp Allergy. 2004;34:184-8.

  56. Mak JC, Ko FW, Chu CM, et al. Polymorphisms in the IL-4, IL-4 receptor alpha chain, TNF-alpha, and lymphotoxin-alpha genes and risk of asthma in Hong Kong Chinese adults. Int Arch Allergy Immunol. 2007;144:114-22.

  57. Baldini M, Vercelli D, Martínez FD. CD14: an example of gene by environment interaction in allergic disease. Allergy. 2002;57:188-92.

  58. Smit LA, Bongers SI, Ruven HJ, et al. Atopy and new-onset asthma in young Danish farmers and CD14, TLR2, and TLR4 genetic polymorphisms: a nested case-control study. Clin Exp Allergy. 2007;37: 1602-8.

  59. Woo JG, Assa’ad A, Heizer AB, Bernstein JA, Hershey GK. The -159 C-->T polymorphism of CD14 is associated with nonatopic asthma and food allergy. J Allergy Clin Immunol. 2003;112:438-44.

  60. Zambelli-Weiner A, Ehrlich E, Stockton ML, et al. Evaluation of the CD14/- 260 polymorphism and house dust endotoxin exposure in the Barbados Asthma Genetics Study. J Allergy Clin Immunol. 2005;115:1203-9.

  61. Heinzmann A, Dietrich H, Jerkic SP, Kurz T, Deichmann KA. Promoter polymorphisms of the CD14 gene are not associated with bronchial asthma in Caucasian children. Eur J Immunogenet. 2003;30:345-8.

  62. Kedda MA, Lose F, Duffy D, Bell E, Thompson PJ, Upham J. The CD14 C-159T polymorphism is not associated with asthma or asthma severity in an Australian adult population. Thorax. 2005;60:211-4.

  63. Nishimura F, Shibasaki M, Ichikawa K, Arinami T, Noguchi E. Failure to find an association between CD14-159C/T polymorphism and asthma: a family-based association test and meta-analysis. Allergol Int. 2006;55:55-8.

  64. Choudhry S, Avila PC, Nazario S, et al. CD14 tobacco gene-environment interaction modifies asthma severity and immunoglobulin E levels in Latinos with asthma. Am J Respir Crit Care Med. 2005;172:173-82.

  65. Nino G, Grunstein MM. Current concepts on the use of glucocorticosteroids and beta-2-adrenoreceptor agonists to treat childhood asthma. Curr Opin Pediatr. 2010;22(3):290-5.

  66. Wjst M. Beta2-adrenoreceptor polymorphisms and asthma. Lancet. 2006;368:710-1.

  67. Wang Z, Chen C, Niu T, et al. Association of asthma with beta(2)-adrenergic receptor gene polymorphism and cigarette smoking. Am J Respir Crit Care Med. 2001;163:1404-9.

  68. Taylor DR, Drazen JM, Herbison GP, Yandava CN, Hancox RJ, Town GI. Asthma exacerbations during long term beta agonist use: influence of beta(2) adrenoceptor polymorphism. Thorax. 2000;55:762-7.

  69. Nelms K, Huang H, Ryan J, Keegan A, Paul WE. Interleukin-4 receptor signalling mechanisms and their biological significance. Adv Exp Med Biol. 1998;452:37-43.

  70. Mitsuyasu H, Izuhara K, Mao XQ, et al. Ile50Val variant of IL4R alpha upregulates IgE synthesis and associates with atopic asthma. Nat Genet. 1998;19:119-20.

  71. Wenzel SE, Balzar S, Ampleford E, et al. IL4R alpha mutations are associated with asthma exacerbations and mast cell/IgE expression. Am J Respir Crit Care Med. 2007;175:570-6.

  72. Battle NC, Choudhry S, Tsai HJ, et al. Ethnicity-specific gene-gene interaction between IL-13 and IL-4Ralpha among African Americans with asthma. Am J Respir Crit Care Med. 2007;175:881-7.

  73. Isidoro-García M, Davila I, Laffond E, Moreno E, Lorente F, González- Sarmiento R. Interleukin-4 (IL4) and Interleukin-4 receptor (IL4RA) polymorphisms in asthma: a case control study. Clin Mol Allergy. 2005; 3:15.

  74. Zhang H, Zhang Q, Wang L, et al. Association of IL4R gene polymorphisms with asthma in Chinese populations. Hum Mutat. 2007;28:1046.

  75. Loza MJ, Chang BL. Association between Q551R IL4R genetic variants and atopic asthma risk demonstrated by meta-analysis. J Allergy Clin Immunol. 2007;120:578-85.

  76. Suresh R, Shally A, Mahdi AA, Patel DK, Singh VK, Rita M. Assessment of association of exposure to polycyclic aromatic hydrocarbons with bronchial asthma and oxidative stress in children: A case control study. Indian J Occup Environ Med. 2009;13:33-7.

  77. Habdous M, Siest G, Herbeth B, Vincent-Viry M, Visvikis S. Glutathione S-transferases genetic polymorphisms and human diseases: overview of epidemiological studies. Ann Biol Clin (París). 2004;62: 15-24.

  78. Park CS, Kim TB, Lee KY, et al. Increased oxidative stress in the airway and development of allergic inflammation in a mouse model of asthma. Ann Allergy Asthma Immunol. 2009;103:238-47.

  79. Minelli C, Granell R, Newson R, et al. Glutathione-S-transferase genes and asthma phenotypes: a Human Genome Epidemiology (HuGE) systematic review and meta-analysis including unpublished data. Int J Epidemiol. 2010;39(2):539-62.

  80. Li YF, Gauderman WJ, Conti DV, Lin PC, Avol E, Gilliland FD. Glutathione S-transferase P1, maternal smoking, and asthma in children: a haplotype- based analysis. Environ Health Perspect. 2008;116:409-15.

  81. Hanene C, Jihene L, Jamel A, Kamel H, Agnes H. Association of GST genes polymorphisms with asthma in Tunisian children. Mediators Inflamm. 2007;2007:19564.

  82. Lee YL, Lee YC, Guo YL. Associations of glutathione S-transferase P1, M1, and environmental tobacco smoke with wheezing illness in school children. Allergy. 2007;62:641-7.

  83. Islam T, Berhane K, McConnell R, et al. Glutathione-S-transferase (GST) P1, GSTM1, exercise, ozone and asthma incidence in school children. Thorax. 2009;64:197-202.

  84. Mapp CE, Fryer AA, De Marzo N, et al. Glutathione S-transferase GSTP1 is a susceptibility gene for occupational asthma induced by isocyanates. J Allergy Clin Immunol. 2002;109:867-72.

  85. Kilfoy BA, Zheng T, Lan Q, et al. Genetic polymorphisms in glutathione S-transferases and cytochrome P450s, tobacco smoking, and risk of non-Hodgkin lymphoma. Am J Hematol. 2009;84:279-82.

  86. Li D, Jiao L, Li Y, et al. Polymorphisms of cytochrome P4501A2 and N-acetyltransferase genes, smoking, and risk of pancreatic cancer. Carcinogenesis. 2006;27:103-11.

  87. Li Y, Millikan RC, Bell DA, et al. Cigarette smoking, cytochrome P4501A1 polymorphisms, and breast cancer among African-American and white women. Breast Cancer Res. 2004;6:R460-73.

  88. McGrath M, Hankinson SE, De Vivo I. Cytochrome P450 1A1, cigarette smoking, and risk of endometrial cancer (United States). Cancer Causes Control. 2007;18:1123-30.

  89. Shields PG, Ambrosone CB, Graham S, et al. A cytochrome P4502E1 genetic polymorphism and tobacco smoking in breast cancer. Mol Carcinog. 1996;17:144-50.

  90. Wu X, Shi H, Jiang H, et al. Associations between cytochrome P4502E1 genotype, mutagen sensitivity, cigarette smoking and susceptibility to lung cancer. Carcinogenesis. 1997;18:967-73.

  91. Yeh CC, Sung FC, Kuo LT, Hsu WP, Chu HY. Polymorphisms of cytochrome P450 1A1, cigarette smoking and risk of coronary artery disease. Mutat Res. 2009;667:77-81.

  92. Haag M, Leusink-Muis T, Le Bouquin R, et al. Increased expression and decreased activity of cytochrome P450 1A1 in a murine model of toluene diisocyanate-induced asthma. Arch Toxicol. 2002;76:621-7.

  93. Liakhovich VV, Vavilin VA, Makarova SI, et al. Role of xenobiotic biotransformation enzymes in susceptibility to bronchial asthma and in formation of its clinical phenotypic features. Vestn Ross Akad Med Nauk. 2000;36-41.

  94. Vavilin VA, Makarova SI, Liakhovich VV, Gavalov SM. Polymorphic genes of xenobiotic-metabolizing enzymes associated with bronchial asthma in genetically predisposed children. Genetika. 2002;38:539-45.

  95. Polonikov AV, Ivanov VP, Solodilova MA. Genetic variation of genes for xenobiotic-metabolizing enzymes and risk of bronchial asthma: the importance of gene-gene and gene-environment interactions for disease susceptibility. J Hum Genet. 2009;54:440-9.

  96. Basu K, Palmer CN, Lipworth BJ, et al. Filaggrin null mutations are associated with increased asthma exacerbations in children and young adults. Allergy. 2008;63:1211-7.

  97. Marenholz I, Kerscher T, Bauerfeind A, et al. An interaction between filaggrin mutations and early food sensitization improves the prediction of childhood asthma. J Allergy Clin Immunol. 2009;123:911-6.

  98. Jones G, Wu S, Jang N, Fulcher D, Hogan P, Stewart G. Polymorphisms within the CTLA4 gene are associated with infant atopic dermatitis. Br J Dermatol. 2006;154:467-71.

  99. Verstraelen S, Nelissen I, Hooyberghs J, et al. Gene profiles of a human alveolar epithelial cell line after in vitro exposure to respiratory (non-) sensitizing chemicals: identification of discriminating genetic markers and pathway analysis. Toxicol Lett. 2009;185:16-22.

  100. Jongepier H, Koppelman GH, Nolte IM, et al. Polymorphisms in SPINK5 are not associated with asthma in a Dutch population. J Allergy Clin Immunol. 2005;115:486-92.

  101. Liu Q, Xia Y, Zhang W, et al. A functional polymorphism in the SPINK5 gene is associated with asthma in a Chinese Han Population. BMC Med Genet. 2009;10:59.

  102. Rihs HP, Kowal A, Raulf-Heimsoth M, Degens PO, Landt O, Bruning T. Rapid detection of the SPINK5 polymorphism Glu420Lys by real-time PCR technology. Clin Chim Acta. 2005;355:185-9.

  103. Noguchi E, Nakayama J, Kamioka M, Ichikawa K, Shibasaki M, Arinami T. Insertion/deletion coding polymorphisms in hHAVcr-1 are not associated with atopic asthma in the Japanese population. Genes Immun. 2003;4:170-3.

  104. Arriba-Mendez S, Sanz C, Isidoro-García M, et al. Analysis of 927T > C CYSLTR1 and -444A > C LTC4S polymorphisms in children with asthma. Allergol Immunopathol (Madr). 2008;36:259-63.

  105. Kawagishi Y, Mita H, Taniguchi M, et al. Leukotriene C4 synthase promoter polymorphism in Japanese patients with aspirin-induced asthma. J Allergy Clin Immunol. 2002;109:936-42.

  106. Munthe-Kaas MC, Carlsen KL, Carlsen KH, et al. HLA Dr-Dq haplotypes and the TNFA-308 polymorphism: associations with asthma and allergy. Allergy. 2007;62:991-8.

  107. Perichon B, Krishnamoorthy R. Asthma and HLA system. Allerg Immunol (París). 1991;23:301-7.

  108. Lee JH, Park HS, Park SW, et al. ADAM33 polymorphism: association with bronchial hyper-responsiveness in Korean asthmatics. Clin Exp Allergy. 2004;34:860-5.

  109. Iwanaga T, McEuen A, Walls AF, et al. Polymorphism of the mast cell chymase gene (CMA1) promoter region: lack of association with asthma but association with serum total immunoglobulin E levels in adult atopic dermatitis. Clin Exp Allergy. 2004;34:1037-42.

  110. Eryuksel E, Ceyhan BB, Bircan R, Avsar M, Cirakoglu B. Angiotensin converting enzyme gene polymorphism in Turkish asthmatic patients. J Asthma. 2009;46:335-8.

  111. Tomita H, Sato S, Matsuda R, et al. Genetic polymorphism of the angiotensin- converting enzyme (ACE) in asthmatic patients. Respir Med. 1998;92:1305-10.

  112. Kim JH, Lee SY, Kim HB, et al. TBXA2R gene polymorphism and responsiveness to leukotriene receptor antagonist in children with asthma. Clin Exp Allergy. 2008;38:51-9.

  113. Leung TF, Tang NL, Lam CW, Li AM, Chan IH, Ha G. Thromboxane A2 receptor gene polymorphism is associated with the serum concentration of cat-specific immunoglobulin E as well as the development and severity of asthma in Chinese children. Pediatr Allergy Immunol. 2002;13:10-7.

  114. Duetsch G, Illig T, Loesgen S, et al. STAT6 as an asthma candidate gene: polymorphism-screening, association and haplotype analysis in a Caucasian sib-pair study. Hum Mol Genet. 2002;11:613-21.

  115. Ali M, Khoo SK, Turner S, Stick S, Le Souef P, Franklin P. NOS1 polymorphism is associated with atopy but not exhaled nitric oxide levels in healthy children. Pediatr Allergy Immunol. 2003;14:261-5.

  116. Grasemann H, Yandava CN, Storm van’s Gravesande K, et al. A neuronal NO synthase (NOS1) gene polymorphism is associated with asthma. Biochem Biophys Res Commun. 2000;272:391-4.

  117. Chang HS, Kim JS, Lee JH, et al. A single nucleotide polymorphism on the promoter of eotaxin1 associates with its mRNA expression and asthma phenotypes. J Immunol. 2005;174:1525-31.

  118. D’Amato M, Bruce S, Bresso F, et al. Neuropeptide s receptor 1 gene polymorphism is associated with susceptibility to inflammatory bowel disease. Gastroenterology. 2007;133:808-17.

  119. Hizawa N, Yamaguchi E, Jinushi E, Kawakami Y. A common FCER1B gene promoter polymorphism influences total serum IgE levels in a Japanese population. Am J Respir Crit Care Med. 2000;161:906-9.

  120. Laing IA, Hermans C, Bernard A, Burton PR, Goldblatt J, Le Souef PN. Association between plasma CC16 levels, the A38G polymorphism, and asthma. Am J Respir Crit Care Med. 2000;161:124-7.

  121. Mansur AH, Fryer AA, Hepple M, Strange RC, Spiteri MA. An association study between the Clara cell secretory protein CC16 A38G polymorphism and asthma phenotypes. Clin Exp Allergy. 2002;32: 994-9.

  122. Higa S, Hirano T, Mayumi M, et al. Association between interleukin-18 gene polymorphism 105A/C and asthma. Clin Exp Allergy. 2003;33:1097-102.

  123. Jung JS, Park BL, Cheong HS, et al. Association of IL-17RB gene polymorphism with asthma. Chest. 2009;135:1173-80.



>Revistas >Gaceta Médica de México >Año2011, No. 1
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019