medigraphic.com
ENGLISH

El Residente

ISSN 2007-2783 (Impreso)
Órgano Oficial del Instituto Científico Pfizer
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2011, Número 3

<< Anterior Siguiente >>

Residente 2011; 6 (3)


Identificación del CYP3A5 en biopsias de pacientes mexicanas con cáncer de mama y su asociación con algunos factores clínico-patológicos

Rodríguez BC, Cárdenas RN, Floriano SE, Lara PE
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 19
Paginas: 148-153
Archivo PDF: 73.93 Kb.


PALABRAS CLAVE

Citocromo P450, CYP3A5, tamoxifeno, cáncer de mama.

RESUMEN

Antecedentes: El cáncer de mama es un problema de salud pública en México y en el mundo. Las enzimas citocromo P450 metabolizan la mayoría de los fármacos antineoplásicos. El tamoxifeno es un modulador selectivo del receptor de estrógenos utilizado en el tratamiento y prevención del cáncer de mama. La conversión de tamoxifeno en el metabolito inactivo N-dismetil-tamoxifeno es efectuada por las enzimas CYP3A4 y CYP3A5. El propósito de esta investigación fue determinar la expresión proteica del CYP3A5 en biopsias de pacientes mexicanas con cáncer de mama. Metodología: Los tejidos se obtuvieron de especímenes de mastectomía radical. Para identificar al CYP3A5 se aplicó la técnica de inmunohistoquímica. Resultados: El CYP3A5 se identificó en el 100% de las pacientes estudiadas. Se encontró asociado a la edad (p = 0.03), al índice de masa corporal (p = 0.03), al sedentarismo (p = 0.02), grupo sanguíneo (0.03) y al antecedente heredo-familiar de cáncer (p = 0.001). El CYP3A5 se asoció con la proteína p53 (p = 0.05) y mostró una correlación con el receptor de estrógeno r = 0.516 (p = 0.01). Conclusiones: El CYP3A5 se expresó en el 100% de las biopsias estudiadas, por lo que la expresión proteica intratumoral de CYP3A5 puede tener influencia sobre la respuesta del tumor hacia los fármacos antineoplásicos.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Boyle P, Levin B. World Cancer Report 2008. World Health Organization International. Agency for Research on Cancer, Lyon.

  2. Knaul FM, Nigenda G, Lozano R, Arreola-Ornelas H, Langer A, Frenk J. Breast cancer in Mexico: A pressing priority. Reproductive Health Matters 2008; 16(32): 113-123.

  3. Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M, Halushka MK, Sukumar S, Parker LM, Anderson KS, Harris LN, Garber JE, Richardson AL, Schnitt SJ, Nikolsky Y, Gelman RS, Polyak K. Molecular definition of breast tumor heterogenity. Cancer Cell 2007; 11: 259-273.

  4. Veronesi U, Surrida S. Breast cancer surgery: a century after Halsted. J Cancer Res Clin Oncol 1996; 122: 74-77.

  5. Beaulieu N, Bloom D, Bloom R. Breakaway: The global burden of cancer-challenges and opportunities. The Economist Intelligence Unit, The Economist. 2009.

  6. Carpenter R, Miller WR. Role of aromatase inhibitors in breast cancer. Br J Cancer 2005; 93 Suppl 1: S1-5. Review.

  7. Osborne CK. Tamoxifen in the treatment of breast cancer. N Engl J Med 1998; 339(22): 1609-1618.

  8. Vogel VG, Costantino JP, Wickerham DL, Cronin WM, Cecchini RS, Atkins JN, Bevers TB, Fehrenbacher L, Pajon ER, Wade JL, Robidoux A, Margoleses RG, James J, Lippman Y. Effects of tamoxifen vs raloxifen on the risk of developing invasive breast cancer and other disease outcomes. The NSABP Study of tamoxifen and raloxifen (STAR) P-2 trial. JAMA 2006; 295:(21): 2727-2743.

  9. Wojnowski L, Kamdem LK. Clinical implications of CYP3A polymorphisms. Expert Opin Drug Metab Toxicol 2006; 2(2): 171-82.

  10. Murray GI, Patimalla S, Stewart KN, Miller ID, Heys SD. Profiling the expression of cytochrome P450 in breast cancer. Histopathology 2010; 57(2): 202-11.

  11. Cribb AE, Knight MJ, Dryer D, Guernsey J, Hender K, Tesch M, Saleh TM. Role of polymorphic human cytochrome P450 enzymes in estrone oxidation. Cancer Epidemiol Biomarkers Prev 2006; 15(3): 551-8.

  12. Iscan M, Klaavuniemi T, Coban T, Kapucuoglu N, Pelkonen O, Raunio H. The expression of cytochrome P450 enzymes in human breast tumours and normal breast tissue. Breast Cancer Res Treat 2001; 70(1): 47-54.

  13. Huang Z, Fasco MJ, Figge HL, Keyomarsi K, Kaminsky LS. Expression of cytochromes P450 in human breast tissue and tumors. Drug Metab Dispos 1996; 24(8): 899-905.

  14. Zhao XJ, Jones DR, Wang YH, Grimm SW, Hall SD. Reversible and irreversible inhibition of CYP3A enzymes by tamoxifen and metabolites. Xenobiotica 2002; 32(10): 863-78.

  15. Tsai SM, Lin CY, Wu SH, Hou LA, Ma H, Tsai LY, Hou MF. Side effects after docetaxel treatment in Taiwanese breast cancer patients with CYP3A4, CYP3A5, and ABCB1 gene polymorphisms. Clin Chim Acta 2009; 40: 4(2):160-5.

  16. Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev. 2002; 18: 54(10): 1271-94.

  17. Desta Z, Kreutz Y, Nguyen AT, Li L, Skaar T, Kamdem LK, Henry NL, Hayes DF, Storniolo AM, Stearns V, Hoffmann E, Tyndale RF, Flockhart DA. Plasma letrozole concentrations in postmenopausal women with breast cancer are associated with CYP2A6 genetic variants, body mass index, and age. Clin Pharmacol Ther 2011; 90(5): 693-700.

  18. Solas C, Bourgarel-Rey V, Quaranta S, Rome A, Simon N, Lacarelle B, Andre N. Impact of plasma and intracellular exposure and CYP3A4, CYP3A5, and ABCB1 genetic polymorphisms on vincristine-induced neurotoxicity. Guilhaumou R, Cancer Chemother Pharmacol 2011. DOI: 10.1007/s00280-011-1745-2.

  19. Sailaja K, Rao DN, Rao DR, Vishnupriya S. Analysis of CYP3A5*3 and CYP3A5*6 gene polymorphisms in Indian chronic myeloid leukemia patients. Asian Pac J Cancer Prev 2010; 11(3): 781-4.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Residente. 2011;6

ARTíCULOS SIMILARES

CARGANDO ...