medigraphic.com
ENGLISH

Revista Mexicana de Ingeniería Biomédica

  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2013, Número 1

<< Anterior Siguiente >>

Rev Mex Ing Biomed 2013; 34 (1)


Detección optimizada de la respuesta infrecuente en interfaces Cerebro-computadora

Lindig-León C, Yáñez-Suárez O
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 8
Paginas: 53-69
Archivo PDF: 1918.90 Kb.


PALABRAS CLAVE

interfaz cerebro-computadora, paradigma de evento raro, inferencia Bayesiana.

RESUMEN

Este trabajo presenta una aplicación desarrollada sobre la plataforma BCI2000 que disminuye el tiempo promedio de selección de los símbolos del deletreador de Donchin. La motivación consistió en reducir el compromiso entre la taza de deletreo y la precisión correspondiente, la cual surge como consecuencia de la gran cantidad de respuestas necesarias para realizar técnicas de promediación coherente. La metodología propuesta se basa en un enfoque Bayesiano que permite calcular la probabilidad posterior asociada con la clasificación de cada objetivo, resultado que indica la evidencia que presentan las respuestas de pertenecer a la clase infrecuente. Cuando existe evidencia suficiente para tomar una decisión, el sistema detiene el proceso de estimulación y continúa con el siguiente símbolo, de lo contrario permanece estimulando al usuario hasta conseguir identificar la letra seleccionada. Después de utilizar la metodología propuesta sobre los registros de 14 usuarios sanos con un número máximo de 5 series de estimulación, el tiempo promedio de deletreo reportado es de 6.1 ± 0.63 letras/min, el cual es comparado con una taza constante de 3.93 letras/min obtenido con un sistema convencional.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Farwell L.A., Donchin E., “Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials”, Electroencephal Clin Neurophysiol, 70(6):510-23, 1988.

  2. Lee T.W., Yu Y.W., Wu H.C., Chen T.J., “Do resting brain dynamics predict oddball evoked-potential?”, BMC Neurosci, 24:12:121, 2011.

  3. Rompelman O, Ros HH., “Coherent averaging technique: a tutorial review. Part 1: Noise reduction and the equivalent filter”, J Biomed Eng, 1986.

  4. Ledesma C., Bojorges E.R., Gentiletti G., Bougrain L., Saavedra C., Yanez O, “P300-Speller Public-Domain Database”, http://akimpech.izt.uam.mx/p300db

  5. Schalk G., McFarland D., Hinterberger T., Birbaumer N., Wolpaw, J., “BCI2000: A General-Purpose Brain-computer Interface System”, IEEE Trans. Biomed. Eng., 51:1034-1043, 2004.

  6. Bishop C.M., Pattern Recognition and Machine Learning, 1st ed, Springer, 2006.

  7. Platt J., “Probabilistic outputs for support vector machines and comparison to regularized likelihood methods”, in Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, Eds. Cambridge, MA: MIT Press, 2000.

  8. Lin H.T., Lin C.J., Weng R.C., “A Note on Platt’s Probabilistic Outputs for Support Vector Machines”, Machine Learning, Volume 68, No. 3, 2007.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Ing Biomed. 2013;34

ARTíCULOS SIMILARES

CARGANDO ...