medigraphic.com
SPANISH

NCT Neumología y Cirugía de Tórax

ISSN 2594-1526 (Electronic)
Antes Revista del Instituto Nacional de Enfermedades Respiratorias

Ver anteriores al 2010

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
  • Policies
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 2

<< Back Next >>

Neumol Cir Torax 2021; 80 (2)

Pulmonary disease caused by nontuberculous mycobacteria: diagnosis, treatment and antimicrobial resistance mechanisms

Carreto-Binaghi L, González Y, Guzmán-Beltrán S
Full text How to cite this article 10.35366/100997

DOI

DOI: 10.35366/100997
URL: https://dx.doi.org/10.35366/100997

Language: Spanish
References: 100
Page: 141-153
PDF size: 395.53 Kb.


Key words:

Nontuberculous mycobacteria, tuberculosis, bacterial resistance, antibiotics, coinfection.

ABSTRACT

Nontuberculous mycobacteria (NTM) are emerging pathogens that affect both immunocompromised and immunocompetent patients. The incidence and prevalence of NTM lung disease have been increasing significantly around the world. Therefore, the correct diagnosis and identification of the species responsible for the infection are essential. In addition, NTM natural resistance to the most commonly used antibiotics must be considered, in order to provide appropriate treatment to each patient. Finally, it is essential to identify possible multiple infections due to strains of M. tuberculosis and NTM, which are not routinely detected and are often difficult to distinguish, because the clinical symptoms cannot differentiate a single infection from a co-infection. This review is focused on all these aspects for the benefit of patients with NTM lung disease.


REFERENCES

  1. Van Ingen J. Microbiological diagnosis of nontuberculous mycobacterial pulmonary disease. Clin Chest Med. 2015;36(1):43-54. Available in: https://doi.org/10.1016/j.ccm.2014.11.005

  2. Koh WJ. Nontuberculous Mycobacteria-Overview. Microbiol Spectr. 2017;5(1). Available in: https://doi.org/10.1128/microbiolspec.tnmi7-0024-2016

  3. Falkinham JO 3rd. Environmental sources of nontuberculous mycobacteria. Clin Chest Med. 2015;36(1):35-41. Available in: https://doi.org/10.1016/j.ccm.2014.10.003

  4. Bryant JM, Grogono DM, Rodriguez-Rincon D, Everall I, Brown KP, Moreno P, et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science. 2016;354(6313):751-757. Available in: https://doi.org/10.1126/science.aaf8156

  5. Jarlier V, Nikaido H. Mycobacterial cell wall: Structure and role in natural resistance to antibiotics. FEMS Microbiol Lett. 1994;123(1-2):11-18. Available in: https://doi.org/10.1111/j.1574-6968.1994.tb07194.x

  6. Falkinham JO. Growth in catheter biofilms and antibiotic resistance of Mycobacterium avium. J Med Microbiol. 2007;56(Pt 2):250-254. Available in: https://doi.org/10.1099/jmm.0.46935-0

  7. Brooks RW, Parker BC, Gruft H, Falkinham JO 3rd. Epidemiology of infection by nontuberculous mycobacteria. V. Numbers in eastern United States soils and correlation with soil characteristics. Am Rev Respir Dis. 1984;130(4):630-633. Available in: https://doi.org/10.1164/arrd.1984.130.4.630

  8. Tortoli E, Fedrizzi T, Meehan CJ, Trovato A, Grottola A, Giacobazzi E, et al. The new phylogeny of the genus Mycobacterium: The old and the news. Infect Genet Evol. 2017;56:19-25. Available in: https://doi.org/10.1016/j.meegid.2017.10.013

  9. Runyon EH. Anonymous mycobacteria in pulmonary disease. Med Clin North Am. 1959;43(1):273-290. Available in: https://doi.org/10.1016/s0025-7125(16)34193-1

  10. Tsukamura M. Identification of mycobacteria. Tubercle 1967;48(4):311-338. Available in: https://doi.org/10.1016/s0041-3879(67)80040-0

  11. De Groote MA, Huitt G. Infections due to rapidly growing mycobacteria. Clin Infect Dos. 2006;42(12):1756-1763. Available in: https://doi.org/10.1086/504381

  12. Ratnatunga CN, Lutzky VP, Kupz A, Doolan DL, Reid DW, Field M, et al. The rise of non-tuberculosis mycobacterial lung disease. Front Immunol. 2020;11:303. Available in: https://doi.org/10.3389/fimmu.2020.00303

  13. Varghese B, Al-Hajoj S. A global update on rare non-tuberculous mycobacteria in humans: epidemiology and emergence. Int J Tuberc Lung Dis. 2020;24(2):214-223. Available in: https://doi.org/10.5588/ijtld.19.0194

  14. Cenetec PP. Diagnóstico y tratamiento de las infecciones por micobacterias no tuberculosas. Med Cutan Iber Lat Am. 2014;43(Supl 1):S6-S13.

  15. Winthrop KL, McNelley E, Kendall B, Marshall-Olson A, Morris C, Cassidy M, et al. Pulmonary nontuberculous mycobacterial disease prevalence and clinical features: An emerging public health disease. Am J Respir Crit Care Med. 2010;182(7):977-982. Available in: https://doi.org/10.1164/rccm.201003-0503oc

  16. Gopalaswamy R, Shanmugam S, Mondal R, Subbian S. Of tuberculosis and non-tuberculous mycobacterial infections – a comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci. 2020;27(1):74. Available in: https://doi.org/10.1186/s12929-020-00667-6

  17. Montufar Andrade FE, Aguilar Londoño C, Saldarriaga Acevedo C, Quiroga Echeverri A, Builes Montaño CE, Mesa Navas MA, et al. Características clínicas, factores de riesgo y perfil de susceptibilidad de las infecciones por micobacterias documentadas por cultivo, en un hospital universitario de alta complejidad en Medellín (Colombia). Rev Chilena Infectol. 2014;31(6):735-742. http://dx.doi.org/10.4067/S0716-10182014000600015

  18. Wu UI, Holland SM. Host susceptibility to non-tuberculous mycobacterial infections. Lancet Infect Dis. 2015;15(8):968-980. Available in: https://doi.org/10.1016/s1473-3099(15)00089-4

  19. Máiz CL, Barbero HE, Nieto RR. Respiratory infections due to nontuberculous mycobacterias. Med Clin (Barc). 2018;150(5):191-197. Available in: https://doi.org/10.1016/j.medcli.2017.07.010

  20. Honda JR, Knight V, Chan ED. Pathogenesis and risk factors for nontuberculous mycobacterial lung disease. Clin Chest Med. 2015;36(1):1-11. Available in: https://doi.org/10.1016/j.ccm.2014.10.001

  21. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al.; ATS Mycobacterial Diseases Subcommittee; American Thoracic Society; Infectious Disease Society of America. An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367-416. Available in: https://doi.org/10.1164/rccm.200604-571st

  22. MacFaddin JF. Pruebas bioquímicas para la identificación de bacterias de importancia clínica. 3ra. Ed. Google Libros. Buenos Aires: Médica-Panamericana; 2003:p.840. Available in: https://books.google.es/books?hl=es&lr=&id=FYWSzy7EjR0C&oi=fnd&pg=PA3&dq=Pruebas+Bioquímicas+para+la+Identificación+de+Bacterias+de+Importancia+Clínica.&ots=ROSOShLdRt&sig=mAq1g8_pqtdX9tBbmUddlcogT6s#v=onepage&q

  23. Forbes BA, Sahm DF, Weissfeld AS. Bailey & Scott's diagnostic microbiology. 12 ed. USA: Elsevier Mosby; 2007.p.200.

  24. Contreras S, Rodríguez D, Vera F, Balcells ME, Celis L, Legarraga P, et al. Identificación de especies de micobacterias mediante espectrometría de masas (MALDI-TOF). Rev Chilena Infectol. 2020;37(3):252-256. http://dx.doi.org/10.4067/s0716-10182020000300252.

  25. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kampfer P, Maiden MCJ, et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol. 2002;52(Pt 3):1043-1047. Available in: https://doi.org/10.1099/00207713-52-3-1043

  26. Tortoli E. Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin Microbiol Rev. 2014;27(4):727-752. Available in: https://doi.org/10.1128/cmr.00035-14

  27. Tortoli E. Standard operating procedure for optimal identification of mycobacteria using 16S rRNA gene sequences. Stand Genomic Sci. 2010;3(2):145-152. Available in: https://doi.org/10.4056/sigs.932152

  28. CLSI. Interpretive criteria for identification of bacteria and fungi by DNA target sequencing; Approved Guideline. MM18-A. Clinical and Laboratory Standards Institute. 2018;28(12). Available in: https://clsi.org/media/1475/mm18a_sample.pdf

  29. Telenti A, Imboden O, Marchesi F, Lowrie D, Cole S, Colston MJ, et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993;341(8846):647-650. Available in: https://doi.org/10.1016/0140-6736(93)90417-f

  30. Adékambi T, Colson P, Drancourt M. rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol. 2003;41(12):5699-5708. Available in: https://doi.org/10.1128/jcm.41.12.5699-5708.2003

  31. De Zwaan R, van Ingen J, van Soolingen D. Utility of rpoB gene sequencing for identification of nontuberculous mycobacteria in the Netherlands. J Clin Microbiol. 2014;52(7):2544-2551. Available in: https://doi.org/10.1128/jcm.00233-14

  32. McNabb A, Eisler D, Adie K, Amos M, Rodrigues M, Stephens G, et al. Assessment of partial sequencing of the 65-kilodalton heat shock protein gene (hsp65) for routine identification of Mycobacterium species isolated from clinical sources. J Clin Microbiol. 2004;42(7):3000-3011. Available in: https://doi.org/10.1128/jcm.42.7.3000-3011.2004

  33. Heym B, Zhang Y, Poulet S, Young D, Cole ST. Characterization of the katG gene encoding a catalase-peroxidase required for the isoniazid susceptibility of Mycobacterium tuberculosis. J Bacteriol. 1993;175(13):4255-4259. Available in: https://doi.org/10.1128/jb.175.13.4255-4259.1993

  34. Ng VH, Cox JS, Sousa AO, MacMicking JD, McKinney JD. Role of KatG catalase-peroxidase in mycobacterial pathogenisis: Countering the phagocyte oxidative burst. Mol Microbiol. 2004;52(5):1291-1302. Available in: https://doi.org/10.1111/j.1365-2958.2004.04078.x

  35. Dias MVB, Vasconcelos IB, Prado AMX, Fadel V, Basso LA, de Azevedo WFJr, et al. Crystallographic studies on the binding of isonicotinyl-NAD adduct to wild-type and isoniazid resistant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis. J Struct Biol. 2007;159(3):369-380. Available in: https://doi.org/10.1016/j.jsb.2007.04.009

  36. Reingewertz TH, Meyer T, McIntosh F, Sullivan J, Meir M, Chang Y-F, et al. Differential sensitivity of mycobacteria to isoniazid is related to differences in Katg-mediated enzymatic activation of the drug. Antimicrob Agents Chemother. 2020;64(2):e01899-19. Available in: https://doi.org/10.1128/aac.01899-19

  37. Miesel L, Rozwarski DA, Sacchettini JC, Jacobs WR Jr. Mechanisms for isoniazid action and resistance. Novartis Found Symp. 1998;217:209-220. Available in: https://doi.org/10.1002/0470846526.ch15

  38. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell. 2001;104(6):901-912. Available in: https://doi.org/10.1016/s0092-8674(01)00286-0

  39. Li QJ, Jiao WW, Yin QQ, Xu F, Li JQ, Sun L, et al. Compensatory mutations of rifampin resistance are associated with transmission of multidrug-resistant Mycobacterium tuberculosis Beijing genotype strains in China. Antimicrob Agents Chemother. 2016;60(5):2807-2812. Available in: https://doi.org/10.1128/aac.02358-15

  40. Klein JL, Brown TJ, French GL. Rifampin resistance in Mycobacterium kansasii is associated with rpoB mutations. Antimicrob Agents Chemother. 2001;45(11):3056-3058. Available in: https://doi.org/10.1128/aac.45.11.3056-3058.2001

  41. Huh HJ, Kim SY, Jhun BW, Shin SJ, Koh WJ. Recent advances in molecular diagnostics and understanding mechanisms of drug resistance in nontuberculous mycobacterial diseases. Infect Genet Evol. 2019;72:169-182. Available in: https://doi.org/10.1016/j.meegid.2018.10.003

  42. Goude R, Amin AG, Chatterjee D, Parish T. The arabinosyltransferase EmbC is inhibited by ethambutol in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2009;53(10):4138-4146. Available in: https://doi.org/10.1128/aac.00162-09

  43. Telenti A, Marchesi F, Balz M, Bally F, Böttger EC, Bodmer T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol. 1993;31(2):175-178. Available in: https://doi.org/10.1128/jcm.31.2.175-178.1993

  44. Safi H, Lingaraju S, Amin A, Kim S, Jones M, Holmes M, et al. Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes. Nat Genet. 2013;45(10):1190-1197. Available in: https://doi.org/10.1038/ng.2743

  45. He L, Wang X, Cui P, Jin J, Chen J, Zhang W, et al. UbiA (Rv3806c) encoding DPPR synthase involved in cell wall synthesis is associated with ethambutol resistance in Mycobacterium tuberculosis. Tuberculosis (Edinb). 2015;95(2):149-154. Available in: https://doi.org/10.1016/j.tube.2014.12.002

  46. Belanger AE, Besra GS, Ford ME, Mikusová K, Belisle JT, Brennan PJ, et al. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci USA. 1996;93(21):11919-11924. Available in: https://doi.org/10.1073/pnas.93.21.11919

  47. Scorpio A, Zhang Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med. 1996;2(6):662-667. Available in: https://doi.org/10.1038/nm0696-662

  48. Shi W, Chen J, Feng J, Cui P, Zhang S, Weng X, et al. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg Microbes Infect. 2014;3(8):e58. Available in: https://doi.org/10.1038/emi.2014.61

  49. Zhang S, Chen J, Shi W, Liu W, Zhang W, Zhang Y, et al. Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg Microbes Infect. 2013;2(6):e34. Available in: https://doi.org/10.1038/emi.2013.38

  50. Sun Q, Li X, Perez LM, Shi W, Zhang Y, Sacchettini JC, et al. The molecular basis of pyrazinamide activity on Mycobacterium tuberculosis PanD. Nat Commun. 2020;11(1):339. Available in: https://doi.org/10.1038/s41467-019-14238-3

  51. Wu ML, Aziz DB, Dartois V, Dick T. NTM drug discovery: status, gaps and the way forward. Drug Discov Today. 2018;23(8):1502-1519. Available in: https://doi.org/10.1016/j.drudis.2018.04.001

  52. Shulha JA, Escalante P, Wilson JW. Pharmacotherapy approaches in nontuberculous mycobacteria infections. Mayo Clin Proc. 2019;94(8):1567-1581. Available in: https://doi.org/10.1016/j.mayocp.2018.12.011

  53. Kotra LP, Haddad J, Mobashery S. Aminoglycosides: Perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother. 2000;44(12):3249-3256. Available in: https://doi.org/10.1128/aac.44.12.3249-3256.2000

  54. Wirmer J, Westhof E. Molecular contacts between antibiotics and the 30s ribosomal particle. Methods Enzymol. 2006;415:180-202. Available in: https://doi.org/10.1016/s0076-6879(06)15012-0

  55. Hobbie SN, Pfister P, Bruell C, Sander P, François B, Westhof E, et al. Binding of neomycin-class aminoglycoside antibiotics to mutant ribosomes with alterations in the A site of 16S rRNA. Antimicrob Agents Chemother. 2006;50(4):1489-1496. Available in: https://doi.org/10.1128/aac.50.4.1489-1496.2006

  56. Schroeder R, Waldsich C, Wank H. Modulation of RNA function by aminoglycoside antibiotics. EMBO J. 2000;19(1):1-9. Available in: https://doi.org/10.1093/emboj/19.1.1

  57. Lety MA, Nair S, Berche P, Escuyer V. A single point mutation in the embB gene is responsible for resistance to ethambutol in Mycobacterium smegmatis. Antimicrob Agents Chemother. 1997;41(12):2629-2633. Available in: https://doi.org/10.1128/aac.41.12.2629

  58. Springer B, Kidan YG, Prammananan T, Ellrott K, Bottger EC, Sander P. Mechanisms of streptomycin resistance: selection of mutations in the 16S rRNA gene conferring resistance. Antimicrob Agents Chemother. 2001;45(10):2877-2884. Available in: https://doi.org/10.1128/aac.45.10.2877-2884.2001

  59. Pfister P, Hobbie S, Brüll C, Corti N, Vasella A, Westhof E, et al. Mutagenesis of 16S rRNA C1409-G1491 base-pair differentiates between 6'O1H and 6'NH3+ aminoglycosides. J Mol Biol. 2005;346(2):467-475. Available in: https://doi.org/10.1016/j.jmb.2004.11.073

  60. Prammananan T, Sander P, Brown BA, Frischkorn K, Onyi GO, Zhang Y, et al. A Single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae. J Infect Dis. 1998;177(6):1573-1581. Available in: https://doi.org/10.1086/515328

  61. Brown-Elliott BA, Nash KA, Wallace RJ Jr. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev. 2012;25(3):545-582. https://doi.org/10.1128/cmr.05030-11

  62. Cobos-Trigueros N, Ateka O, Pitart C, Vila J. Macrolides and ketolides. Enferm Infecc Microbiol Clin. 2009;27(7):412-418. Available in: https://doi.org/10.1016/j.eimc.2009.06.002

  63. Esteban J, Navas E. Tratamiento de las infecciones producidas por micobacterias no tuberculosas. Enferm Infecc Microbiol Clin. 2018;36(9):586-592. Available in: https://doi.org/10.1016/j.eimc.2017.10.008

  64. Zuckerman JM, Qamar F, Bono BR. Macrolides, ketolides, and glycylcyclines: azithromycin, clarithromycin, telithromycin, tigecycline. Infect Dis Clin North Am. 2009;23(4):997-1026, ix-x. Available in: https://doi.org/10.1016/j.idc.2009.06.013

  65. Guillemin I, Sougakoff W, Cambau E, Revel-Viravau V, Moreau N, Jarlier V. Purification and inhibition by quinolones of DNA gyrases from Mycobacterium avium, Mycobacterium smegmatis and Mycobacterium fortuitum bv. peregrinum. Microbiology (Reading). 1999;145(Pt 9):2527-2532. Available in: https://doi.org/10.1099/00221287-145-9-2527

  66. Gellert M, Mizuuchi K, O'Dea MH, Itoh T, Tomizawa JI. Nalidixic acid resistance: A second genetic character involved in DNA gyrase activity. Proc Natl Acad Sci USA. 1977;74(11):4772-4776. Available in: https://doi.org/10.1073/pnas.74.11.4772

  67. Sugino A, Peebles CL, Kreuzer KN, Cozzarelli NR. Mechanism of action of nalidixic acid: Purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc Natl Acad Sci USA. 1977;74(11):4767-4771. Available in: https://doi.org/10.1073/pnas.74.11.4767

  68. Li XZ, Zhang L, Nikaido H. Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother. 2004;48(7):2415-2423. Available in: https://doi.org/10.1128/aac.48.7.2415-2423.2004

  69. Esteban J, Martín-de-Hijas NZ, Ortiz A, Kinnari TJ, Sánchez AB, Gadea I, et al. Detection of lfrA and tap efflux pump genes among clinical isolates of non-pigmented rapidly growing mycobacteria. Int J Antimicrob Agents. 2009;34(5):454-456. Available in: https://doi.org/10.1016/j.ijantimicag.2009.06.026

  70. Sander P, Rossi ED, Boddinghaus B, Cantoni R, Branzoni M, Bottger EC, et al. Contribution of the multidrug efflux pump LfrA to innate mycobacterial drug resistance. FEMS Microbiol Lett. 2000;193(1):19-23. Available in: https://doi.org/10.1111/j.1574-6968.2000.tb09396.x

  71. Bellinzoni M, Buroni S, Schaeffer F, Riccardi G, De Rossi E, Alzari PM. Structural plasticity and distinct drug-binding modes of LfrR, a mycobacterial efflux pump regulator. J Bacteriol. 2009;191(24):7531-7537. https://doi.org/10.1128/jb.00631-09

  72. Philley JV, Wallace RJ Jr, Benwill JL, Taskar V, Brown-Elliott BA, Thakkar F, et al. Preliminary results of bedaquiline as salvage therapy for patients with nontuberculous mycobacterial lung disease. Chest 2015;148(2):499-506. Available in: https://doi.org/10.1378/chest.14-2764

  73. Andries K, Verhasselt P, Guillemont J, Göhlmann HWH, Neefs JM, Winkler H, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005;307(5707):223-227. Available in: https://doi.org/10.1126/science.1106753

  74. Koul A, Dendouga N, Vergauwen K, Molenberghs B, Vranckx L, Willebrords R, et al. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol. 2007;3(6):323-324. Available in: https://doi.org/10.1038/nchembio884

  75. Huitric E, Verhasselt P, Koul A, Andries K, Hoffner S, Andersson DI. Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother. 2010;54(3):1022-1028. Available in: https://doi.org/10.1128/aac.01611-09

  76. Almeida D, Ioerger T, Tyagi S, Li SY, Mdluli K, Andries K, et al. Mutations in pepQ confer low-level resistance to bedaquiline and clofazimine in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2016;60(8):4590-4599. Available in: https://doi.org/10.1128/aac.00753-16

  77. Cholo MC, Mothiba MT, Fourie B, Anderson R. Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J Antimicrob Chemother. 2017;72(2):338-353. Available in: https://doi.org/10.1093/jac/dkw426

  78. Pang Y, Zheng H, Tan Y, Song Y, Zhao Y. In vitro activity of bedaquiline against nontuberculous mycobacteria in China. Antimicrob Agents Chemother. 2017;61(5):e02627-16. Available in: https://doi.org/10.1128/aac.02627-16

  79. Alexander DC, Vasireddy R, Vasireddy S, Philley JV, Brown-Elliott BA, Perry BJ, et al. Emergence of mmpT5 variants during bedaquiline treatment of Mycobacterium intracellulare lung disease. J Clin Microbiol. 2017;55(2):574-584. Available in: https://doi.org/10.1128/jcm.02087-16

  80. Li B, Ye M, Guo Q, Zhang Z, Yang S, Ma W, et al. Determination of MIC distribution and mechanisms of decreased susceptibility to bedaquiline among clinical isolates of Mycobacterium abscessus. Antimicrob Agents Chemother. 2018;62(7):e00175-18. Available in: https://doi.org/10.1128/aac.00175-18

  81. Yu X, Gao XP, Li C, Luo J, Wen S, Zhang T, et al. In vitro activities of bedaquiline and delamanid against nontuberculous mycobacteria isolated in Beijing, China. Antimicrob Agents Chemother. 2019;63(8):e00031-19. Available in: https://oi.org/10.1128/aac.00031-19

  82. Matsumoto M, Hashizume H, Tomishige T, Kawasaki M, Tsubouchi H, Sasaki H, et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med. 2006;3(11):e466. Available in: https://doi.org/10.1371/journal.pmed.0030466

  83. Fujiwara M, Kawasaki M, Hariguchi N, Liu Y, Matsumoto M. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuberculosis (Edinb). 2018;108:186-194. Available in: https://doi.org/10.1016/j.tube.2017.12.006

  84. Feuerriegel S, Koser CU, Baù D, Rüsch-Gerdes S, Summers DK, Archer JAC, et al. Impact of Fgd1 and ddn diversity in Mycobacterium tuberculosis complex on in vitro susceptibility to PA-824. Antimicrob Agents Chemother. 2011;55(12):5718-5722. Available in: https://doi.org/10.1128/aac.05500-11

  85. Bashiri G, Rehan AM, Greenwood DR, Dickson JMJ, Baker EN. Metabolic engineering of cofactor F420 production in Mycobacterium smegmatis. PLoS One. 2010;5(12):e15803. Available in: https://doi.org/10.1371/journal.pone.0015803

  86. Hoffmann H, Kohl TA, Hofmann-Thiel S, Merker M, Beckert P, Jaton K, et al. Delamanid and bedaquiline resistance in Mycobacterium tuberculosis ancestral Beijing genotype causing extensively drug-resistant tuberculosis in a tibetan refugee. Am J Respir Crit Care Med. 2016;193(3):337-340. Available in: https://doi.org/10.1164/rccm.201502-0372le

  87. OMS. OMS | Tuberculosis resistente y multirresistente - Preguntas frecuentes. WHO (2013). Acceso: agosto 2020. Disponible en: https://clsi.org/media/1475/mm18a_sample.pdf

  88. World Health Organization, G. T. Global tuberculosis report 2020. [Access date: 2020 August]. https://www.who.int/publications/i/item/9789240013131

  89. Philley JV, Griffith DE. Management of nontuberculous mycobacterial (NTM) lung disease. Semin Respir Crit Care Med. 2013;34(1):135-142. Available in: https://doi.org/10.1055/s-0033-1333575

  90. Van Ingen J, Ferro BE, Hoefsloot W, Boeree MJ, van Soolingen D. Drug treatment of pulmonary nontuberculous mycobacterial disease in HIV-negative patients: the evidence. Expert Rev Anti Infect Ther. 2013;11(10):1065-1077. Available in: https://doi.org/10.1586/14787210.2013.830413

  91. Kang YA, Koh WJ. Antibiotic treatment for nontuberculous mycobacterial lung disease. Expert Rev Respir Med. 2016;10(5):557-568. Available in: https://doi.org/10.1586/17476348.2016.1165611

  92. Adjemian J, Prevots DR, Gallagher J, Heap K, Gupta R, Griffith D. Lack of adherence to evidence-based treatment guidelines for nontuberculous mycobacterial lung disease. Ann Am Thorac Soc. 2014;11(1):9-16. Available in: https://doi.org/10.1513/annalsats.201304-085oc

  93. Philley JV, Griffith DE. Treatment of slowly growing mycobacteria. Clin Chest Med. 2015;36(1):79-90. Available in: https://doi.org/10.1016/j.ccm.2014.10.005

  94. Hoza AS, Mfinanga SGM, Rodloff AC, Moser I, Konig B. Increased isolation of nontuberculous mycobacteria among TB suspects in Northeastern, Tanzania: Public health and diagnostic implications for control programmes. BMC Res Notes. 2016;9:109. Available in: https://doi.org/10.1186/s13104-016-1928-3

  95. Baran E. Mycobacterium avium complex en paciente inmunocompetente. Neumol Cir Torax. 2012;71(2):170-173.

  96. Ishiekwene C, Subran M, Ghitan M, Kuhn-Basti M, Chapnick E, Lin YS. Case report on pulmonary disease due to coinfection of Mycobacterium tuberculosis and Mycobacterium abscessus: Difficulty in diagnosis. Respir Med Case Rep. 2017;20:123-124. Available in: https://doi.org/10.1016/j.rmcr.2017.01.011

  97. Vega MR, Rodríguez VJC, Sarduy PM. Infección respiratoria por Mycobacterium kansasii. Rev Cubana Med. 2015;54(1):6-13.

  98. Kotwal A, Raghuvanshi S, Sindhwani G, Khanduri R. Mycobacterium tuberculosis and nontuberculosis mycobacteria co-infection: Two cases from the sub-Himalayan region of North India in a year. Lung India. 2017;34(5):494-496. Available in: https://doi.org/10.4103/lungindia.lungindia_108_17

  99. Agizew T, Basotli J, Alexander H, Boyd R, Letsibogo G, Auld A, et al. Higher-than-expected prevalence of nontuberculous mycobacteria in HIV setting in Botswana: Implications for diagnostic algorithms using Xpert MTB/RIF assay. PLoS One. 2017;12(12):e0189981. Available in: https://doi.org/10.1371/journal.pone.0189981

  100. Wang DM, Liao Y, Li QF, Zhu M, Wu GH, Xu YH, et al. Drug resistance and pathogenic spectrum of patients coinfected with nontuberculous mycobacteria and human-immunodeficiency virus in Chengdu, China. Chin Med J (Engl). 2019;132(11):1293-1297. Available in: https://doi.org/10.1097/cm9.0000000000000235




Figure 1
Table 1
Table 2
Table 3
Table 4
Table 5

2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Neumol Cir Torax. 2021;80