medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2021; 24 (1)

The involvement of mitogen-activated protein kinases in hormone signaling in Arabidopsis thaliana L.

González-Coronel JM, Guevara-García ÁA
Full text How to cite this article

Language: Spanish
References: 86
Page:
PDF size: 440.76 Kb.


Key words:

MAP kinase module, abscisic acid, auxins, brassinosteroids, ethylene, gibberellin, jasmonic acid, salicylic acid.

ABSTRACT

The signaling modules mediated by mitogen-activated protein kinases or MAPKs participate in the transduction of different types of signals through the phosphorylation of several substrates such as enzymes, structural components, transcriptional factors and even other kinases. These modules are made up of members of three different protein families, called MAPK, MEK or MAPKK (MAP kinase kinase) and MEKK or MAPKKK (MAP kinase kinase kinase), which are activated sequentially by phosphorylation of amino acid residues located in the activation domain. By regulating the cascades of MAPKs, cells can respond to different types of stress. Furthermore, plant hormones have also been shown to influence plant response through signaling cascades mediated by MAPK. In this work we present a summary about the various hormone signaling mechanisms in Arabidopsis thaliana L., in which a signaling cascade of MAPKs participates.


REFERENCES

  1. Abbas, M., Alabadí,D. & Blázquez, M. (2013). “Differential Growth at the Apical Hook: All Roads Lead to Auxin.” Frontiers in Plant Science, 4 (441). https://doi.org/10.3389/ fpls.2013.00441

  2. Ahlfors, R., Macioszek, V., Rudd, J., Brosché, M., Schlichting, R., Scheel, D. & Kangasjärvi, J. (2004). “Stress Hormone- Independent Activation and Nuclear Translocation of Mitogen-Activated Protein Kinases in Arabidopsis thaliana during Ozone Exposure.” Plant Journal, 40 (4), 512–522. https://doi.org/10.1111/j.1365-313X.2004.02229.x

  3. Andreasson, E., Jenkins, T., Brodersen, P., Thorgrimsen, S., Petersen, N. H. T., Zhu, S., Qiu, J. L., Micheelsen, P., Rocher, A., Petersen, M., Newman M. A., Nielsen, H. B., Hirt, H., Somssich, I., Mattson, O. & Mundy, J. (2005). “The MAP Kinase Substrate MKS1 Is a Regulator of Plant Defense Responses.” EMBO Journal, 24 (14), 2579–2589. https://doi.org/10.1038/sj.emboj.7600737

  4. Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., Boller, T., Ausubel, F. M. & Sheen, J. (2002). “Map Kinase Signalling Cascade in Arabidopsis Innate Immunity.” Nature, 415 (6875), 977–983. https:// doi.org/10.1038/415977a

  5. Babenko, L. М. (2015). “Jasmonic Acid: Role in Biotechnology and the Regulation of Plants Biochemical Processes.” Biotechnologia Acta, 8 (2), 36–51. 10.15407/biotech8.02.036

  6. Bai, F. & Matton D. P. (2018). “The Arabidopsis Mitogen- Activated Protein Kinase Kinase Kinase 20 (MKKK20) C-Terminal Domain Interacts with MKK3 and Harbors a Typical DEF Mammalian MAP Kinase Docking Site.” Plant Signaling & Behavior, 13 (8), e1503498. https://doi. org/10.1080/15592324.2018.1503498

  7. Bequette, C. J., Hind, S. R., Pulliam, S., Higgins, R. & Stratmann, J. W. (2018). “MAP Kinases Associate with High Molecular Weight Multiprotein Complexes.” Journal of Experimental Botany, 69 (3), 643–654. https://doi.org/10.1093/jxb/erx424

  8. Bigeard, J. & Hirt, H. (2018). “Nuclear Signaling of Plant MAPKs.” Frontiers in Plant Science, 9 (4), 1–18. https:// doi.org/10.3389/fpls.2018.00469

  9. Boter, M., Ruíz-Rivero, O., Abdeen, A. & Prat, S. (2004). “Conserved MYC Transcription Factors Play a Key Role in Jasmonate Signaling Both in Tomato and Arabidopsis.” Genes and Development, 18 (13), 1577–1591. https://doi. org/10.1101/gad.297704

  10. Brenner, W. G. & Schmülling, T. (2012). “Transcript Profiling of Cytokinin Action in Arabidopsis Roots and Shoots Discovers Largely Similar but Also Organ-Specific Responses.” BMC Plant Biology 12 (112). https://doi. org/10.1186/1471-2229-12-112

  11. Brodersen, P., Petersen, M., Nielsen, H. B., Zhu, S., Newman, M. A., Shokat, K. M., Riet, S., Parker, J. & Mundy, J. (2006). “Arabidopsis MAP Kinase 4 Regulates Salicylic Acid- and Jasmonic Acid/Ethylene-Dependent Responses via EDS1 and PAD4.” The Plant Journal: For Cell and Molecular Biology, 47 (4), 532–546. https://doi.org/10.1111/j.1365- 313X.2006.02806.x

  12. Brunet, A., Pagés, G. & Pouysségur, J. (1994). “Growth Factor- Stimulated MAP Kinase Induces Rapid Retrophosphorylation and Inhibition of MAP Kinase Kinase (MEK1).” FEBS Letters, 346 (2), 299–303. https://doi.org/10.1016/0014- 5793(94)00475-7.

  13. Cao, M., Chen, R., Li, P., Yu, Y., Zheng, R., Ge, D., Zheng, Wang, X., Gu, Y., Gelová, Z., Friml, J., Zhang, H., Liu, R., He, J. & Xu, T. (2019). “TMK1-Mediated Auxin Signalling Regulates Differential Growth of the Apical Hook.” Nature, 568 (7751), 240–243. https://doi.org/10.1038/s41586-019- 1069-7

  14. Carneiro, J. M. T., Chacón-Madrid, K., Maciel, B. C. M. & Zezzi, M. A. (2015). “Arabidopsis thaliana and Omics Approaches: A Review.” Journal of Integrated Omics, 5 (1), 16. https://doi.org/10.5584/jiomics.v5i1.179

  15. Chai, J., Liu, J., Zhou, J. & Xing, D. (2014). “Mitogen-Activated Protein Kinase 6 Regulates NPR1 Gene Expression and Activation during Leaf Senescence Induced by Salicylic Acid.” Journal of Experimental Botany, 65 (22), 6513–6528. https://doi.org/10.1093/jxb/eru369

  16. Chardin, C., Krapp, A., Schenk, S. T., Hirt, H. & Colcombet, J. (2017). “Review: Mitogen-Activated Protein Kinases in Nutritional Signaling in Arabidopsis.” Plant Science, 260 (3), 101–108. https://doi.org/10.1016/j.plantsci.2017.04.006

  17. Colcombet, J. & Hirt, H. (2008). “Arabidopsis MAPKs: A Complex Signalling Network Involved in Multiple Biological Processes.” Biochemical Journal, 413 (2), 217–226. https://doi.org/10.1042/BJ20080625

  18. D’Agostino, I. B. & Kieber, J. J. (1999). “Molecular Mechanisms of Cytokinin Action.” Current Opinion in Plant Biology, 2 (5), 359–364. https://doi.org/10.1016/ S1369-5266(99)00005-9

  19. Dai, Y. (2006). “Increased Expression of MAP KINASE KINASE7 Causes Deficiency in Polar Auxin Transport and Leads to Plant Architectural Abnormality in Arabidopsis.” The Plant Cell Online, 18 (2), 308–320. https://doi. org/10.1105/tpc.105.037846

  20. Danquah, A., Zelicourt, A., Colcombet, J. & Hirt, H. (2014). “The Role of ABA and MAPK Signaling Pathways in Plant Abiotic Stress Responses.” Biotechnology Advances, 32 (1), 40–52. https://doi.org/10.1016/j.biotechadv.2013.09.006

  21. De Lucas, M., Davière, J. M., Rodríguez-Falcón, M., Pontin, M., Iglesias-Pedraz, J. M., Lorrain, S., Fankhauser, C., Blázquez, M. A., Titarenko, E. & Prat, S. (2008). “A Molecular Framework for Light and Gibberellin Control of Cell Elongation.” Nature, 451 (7177), 480–484. https:// doi.org/10.1038/nature06520

  22. Enders, T. A., Frick, E. M. & Strader, L. C. (2017). “An Arabidopsis Kinase Cascade Influences Auxin-Responsive Cell Expansion.” Plant Journal, 92 (1), 68–81. https://doi. org/10.1111/tpj.13635

  23. Friso, G, & van Wijk, K. J. (2015). “Posttranslational Protein Modifications in Plant Metabolism.” Plant Physiology, 169 (3), 1469–1487. https://doi.org/10.1104/pp.15.01378

  24. Frye, C. A. (2001). “From the Cover: Negative Regulation of Defense Responses in Plants by a Conserved MAPKK Kinase.” Proceedings of the National Academy of Sciences, 98 (1), 373–378. https://doi.org/10.1073/pnas.011405198

  25. Guo, H., Li, L., Aluru, M., Aluru, S. & Yin, Y. (2013). “Mechanisms and Networks for Brassinosteroid Regulated Gene Expression.” Current Opinion in Plant Biology, 16 (5), 545–553. https://doi.org/10.1016/j.pbi.2013.08.002

  26. Gupta, R. & Chakrabarty, S. K. (2013). “Gibberellic Acid in Plant.” Plant Signaling & Behavior, 8 (9), e25504. https:// doi.org/10.4161/psb.25504

  27. Hamel, L. P., Nicole, M. C., Sritubtim, S., Morency, M. J., Ellis, M., Ehlting, J., Beaudoin, N., Barbazuk, B., Klessig, D., Lee, J., Martin, G., Mundy, J., Ohashi, Y., Scheel, D., Sheen, J., Xing, T., Zhang, S., Seguin, A. & Ellis, B. E. (2006). “Ancient Signals: Comparative Genomics of Plant MAPK and MAPKK Gene Families.” Trends in Plant Science, 11 (4), 192–198. https://doi.org/10.1016/j.tplants.2006.02.007

  28. Hashiguchi, A. & Komatsu, S. (2017). “Chapter Six - Posttranslational Modifications and Plant–Environment Interaction.” In Methods in Enzymology, 586, 97–113. https://doi.org/10.1016/bs.mie.2016.09.030

  29. Hirt, H. (1997). “Multiple Roles of MAP Kinases in Plant Signal Transduction.” Trends in Plant Science, 2 (1), 11–14. https:// doi.org/10.1016/S1360-1385(96)10048-0

  30. Hou, X., Ding, L. & Yu, H. (2013). “Crosstalk between GA and JA Signaling Mediates Plant Growth and Defense.” Plant Cell Reports, 32 (7), 1067–1074. https://doi.org/10.1007/ s00299-013-1423-4

  31. Huang, R., Zheng, R., He, J., Zhou, Z., Wang, J., Xiong, Y. & Xu, T. (2019). “Noncanonical Auxin Signaling Regulates Cell Division Pattern during Lateral Root Development.” Proceedings of the National Academy of Sciences of the United States of America, 116 (42), 21285–21290. https:// doi.org/10.1073/pnas.1910916116

  32. Hwang, I. & Sheen, J. (2001). “Two-Component Circuitry in Arabidopsis Cytokinin Signal Transduction.” Nature, 413 (6854), 383–389. https://doi.org/10.1038/35096500

  33. Ichimura, K., Mizoguchi, T., Irie, K., Morris, P., Giraudat, J., Matsumoto, K. & Shinozaki, K. (1998). “Isolation of ATMEKK1 (a MAP Kinase Kinase Kinase)-Interacting Proteins and Analysis of a MAP Kinase Cascade in Arabidopsis.” Biochemical and Biophysical Research Communications, 253 (2), 532–543. https://doi.org/10.1006/ bbrc.1998.9796

  34. Ichimura, K., Shinozaki, K., Tena, G., Sheen, J., Henry, Y., Champion, A., Kreis, M., Zhang, S., Hirt, H., Wilson, C., Heberle-Bors, E., Ellis, B. E., Morris, P. C., Innes, R. W., Ecker, J. R., Scheel, D., Klessig, D. F., Machida, Y., Mundy, J., Ohashi, Y. & Walker, J. C. (2002). “Mitogen-Activated Protein Kinase Cascades in Plants: A New Nomenclature.” Trends in Plant Science, 7 (7), 301–308. https://doi. org/10.1016/S1360-1385(02)02302-6

  35. Jalmi, S. & Sinha, A. (2015). “ROS Mediated MAPK Signaling in Abiotic and Biotic Stress- Striking Similarities and Differences.” Frontiers in Plant Science, 6 (769). https:// doi.org/10.3389/fpls.2015.00769

  36. Jia, W., Li, B., Li, S., Liang, Y., Wu, X., Ma, M., Wang, J., Gao, J., Cai, Y., Zhang, Y., Wang, Y., Li, J. & Wang, Y. (2016). “Mitogen-Activated Protein Kinase Cascade MKK7-MPK6 Plays Important Roles in Plant Development and Regulates Shoot Branching by Phosphorylating PIN1 in Arabidopsis.” PLoS Biology, 14 (9), 1–24. https://doi.org/10.1371/journal. pbio.1002550

  37. Jiang, Y. & Fu, J. (2000). “Ethylene Regulation of Fruit Ripening: Molecular Aspects.” Plant Growth Regulation, 30 (3), 193–200. https://doi.org/10.1023/A:1006348627110

  38. Jiménez-Sánchez, M., Cid, V. J. & Molina, M. (2007). “Retrophosphorylation of Mkk1 and Mkk2 MAPKKs by the Slt2 MAPK in the Yeast Cell Integrity Pathway”. The Journal of Biological Chemistry, 282 (43), 31174–31185. https://doi.org/10.1074/jbc.M706270200

  39. Josse, E. M. & Halliday, K. J. (2008). “Skotomorphogenesis: The Dark Side of Light Signalling.” Current Biology, 18 (24), R1144–1146. https://doi.org/10.1016/j.cub.2008.10.034

  40. Kakimoto, T. (1996). “CKI1, a Histidine Kinase Homolog Implicated in Cytokinin Signal Transduction.” Science, 274 (5289), 982–985. https://doi.org/10.1126/ science.274.5289.982

  41. Khan, F. & Hakeem, K. R. (2014). “Cell Signaling during Drought and Salt Stress.” Plant Signaling: Understanding the Molecular Crosstalk, Spinger, 978-81-322-15, 227–239. https://doi.org/10.1007/978-81-322-1542-4_11

  42. Khokon, Md. A.R., Salam, M. A., Jammes, F., Ye, W., Hossain, M. A., Uraji, M., Nakamura, Y., Mori, I. C., Kwak, J. M. & Murata, Y. (2015). “Two Guard Cell Mitogen-Activated Protein Kinases, MPK9 and MPK12, Function in Methyl Jasmonate-Induced Stomatal Closure in Arabidopsis thaliana.” Plant Biology, 17 (5), 946–952. https://doi. org/10.1111/plb.12321

  43. Kim, T. W., Michniewicz, M., Bergmann, D. C. & Wang, Z. Y. (2012). “Brassinosteroid Regulates Stomatal Development by GSK3-Mediated Inhibition of a MAPK Pathway.” Nature, 482 (7385), 419–422. https://doi.org/10.1038/ nature10794

  44. Kovtun, Y., Chiu, W., Tena, G. & Sheen, J. (2000). “Functional Analysis of Oxidative Stress-Activated Mitogen-Activated Protein Kinase Cascade in Plants” Proceedings of the National Academy of Sciences of the United States of America, 97 (6), 2940–2945. https://doi.org/10.1073/ pnas.97.6.2940

  45. Lee, H. (2015). “Mitogen-Activated Protein Kinase Kinase 3 Is Required for Regulation during Dark-Light Transition.” Molecules and Cells, 38 (7), 651–656. https://doi. org/10.14348/molcells.2015.0055

  46. Lee, J. S., Wang, S., Sritubtim, S., Chen, J. G. & Ellis, B. E. (2009). “Arabidopsis Mitogen-Activated Protein Kinase MPK12 Interacts with the MAPK Phosphatase IBR5 and Regulates Auxin Signaling.” Plant Journal, 57 (6), 975–985. https://doi.org/10.1111/j.1365-313X.2008.03741.x

  47. Li, K., Yang, F., Zhang, G., Song, S., Li, Y., Ren, D., Miao, Y. & Song, C. P. (2017). “AIK1, a Mitogen-Activated Protein Kinase, Modulates Abscisic Acid Responses through the MKK5-MPK6 Kinase Cascade.” Plant Physiology, 173 (2), 1391–1408. https://doi.org/10.1104/pp.16.01386

  48. Liu, Y. & Zhang, S. (2004). “Phosphorylation of 1-Aminocyclopropane-1-Carboxylic Acid Synthase by MPK6 , a Stress-Responsive Mitogen-Activated Protein Kinase, Induces Ethylene Biosynthesis in Arabidopsis” Plant Cell, 16 (12), 3386–3399. https://doi.org/10.1105/ tpc.104.026609

  49. López-Bucio, J. S., Dubrovsky, J. G., Raya-González, J., Ugartechea-Chirino, Y., López-Bucio, J., De Luna-Valdez, L. A., Ramos-Vega, M., León, P. & Guevara-García, A. A. (2014). “Arabidopsis thaliana Mitogen-Activated Protein Kinase 6 Is Involved in Seed Formation and Modulation of Primary and Lateral Root Development.” Journal of Experimental Botany, 65 (1), 169–183. https://doi. org/10.1093/jxb/ert368

  50. Lv, B., Wei, K., Hu, K., Tian, T., Zhang, F., Yu, Z., Zhang, D., Su, Y., Sang, Y., Zhang, X. & Ding, Z. (2021). “MPK14-Mediated Auxin Signaling Controls Lateral Root Development via ERF13-Regulated Very-Long-Chain Fatty Acid Biosynthesis.” Molecular Plant, 14 (2), 285–297. https://doi.org/10.1016/j.molp.2020.11.011

  51. Mishra, N. S., Tuteja, R. & Tuteja, N. (2006). “Signaling through MAP Kinase Networks in Plants.” Archives of Biochemistry and Biophysics, 452 (1), 55–68. https://doi.org/10.1016/j. abb.2006.05.001

  52. Miura, K. & Tada, Y. (2014). “Regulation of Water, Salinity, and Cold Stress Responses by Salicylic Acid.” Frontiers in Plant Science, 5 (1), 1–12. https://doi.org/10.3389/ fpls.2014.00004

  53. Mizoguchi, T., Gotoh, Y., Nishida, E., Yamaguchi-Shinozaki, K., Hayashida, N., Iwasaki, T., Kamada, H. & Shinozaki, K. (1994). “Characterization of Two CDNAs That Encode MAP Kinase Homologues in Arabidopsis thaliana and Analysis of the Possible Role of Auxin in Activating Such Kinase Activities in Cultured Cells.” The Plant Journal, 5 (1), 111–122. https://doi.org/10.1046/j.1365- 313x.1994.5010111.x

  54. Mockaitis, K. & Howell, S. H. (2000). “Auxin Induces Mitogenic Activated Protein Kinase (MAPK) Activation in Roots of Arabidopsis Seedlings.” Plant Journal, 24 (6), 785–796. https://doi.org/10.1046/j.1365-313X.2000.00921.x

  55. Nakagami, H., Pitzschke, A. & Hirt, H. (2005). “Emerging MAP Kinase Pathways in Plant Stress Signalling.” Trends in Plant Science, 10 (7), 339-346. https://doi.org/10.1016/j. tplants.2005.05.009

  56. Nazar, R., Umar, S., Khan, N. A. & Sareer, O. (2015). “Salicylic Acid Supplementation Improves Photosynthesis and Growth in Mustard through Changes in Proline Accumulation and Ethylene Formation under Drought Stress.” South African Journal of Botany, 98, 84–94. https://doi.org/10.1016/j. sajb.2015.02.005

  57. Olsen, J. V. & Mann, M. (2013). “Status of Large-Scale Analysis of Posttranslational Modifications by Mass Spectrometry.” Molecular and Cellular Proteomics, 12 (12), 3444–3452. https://doi.org/10.1074/mcp.O113.034181

  58. Ortiz-Masia, D., Perez-Amador, M. A., Carbonell, J. & Marcote, M. J. (2007). “Diverse Stress Signals Activate the C1 Subgroup MAP Kinases of Arabidopsis.” FEBS Letters, 581 (9), 1834–1840. https://doi.org/10.1016/j. febslet.2007.03.075

  59. Pecher, P., Eschen-Lippold, L., Herklotz, S., Kuhle, K., Naumann, K., Bethke, G., Uhrig, J., Weyhe, M., Scheel, D. & Lee, J. (2014). “The Arabidopsis thaliana Mitogen- Activated Protein Kinases MPK3 and MPK6 Target a Subclass of ’VQ-Motif’-Containing Proteins to Regulate Immune Responses.” New Phytologist, 203 (2), 592–606. https://doi.org/10.1111/nph.12817

  60. Perilli, S., Moubayidin, L. & Sabatini, S. (2010). “The Molecular Basis of Cytokinin Function.” Current Opinion in Plant Biology, 13 (1), 21–26. https://doi.org/10.1016/j. pbi.2009.09.018

  61. Perrot-Rechenmann, C. (2010). “Cellular Responses to Auxin: Division versus Expansion.” Cold Spring Harbor Perspectives in Biology, 2 (5), 1–15. https://doi.org/10.1101/ cshperspect.a001446

  62. Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H. B., Lacy, M., Austin, M. J., Parker, J. E., Sharma, S. B., Klessig, D. F., Martienssen, R., Mattsson, O., Jensen A. B. & Mundy, J. (2000). “Arabidopsis MAP Kinase 4 Negatively Regulates Systemic Acquired Resistance.” Cell, 103 (7), 1111–1120. https://doi.org/10.1016/S0092-8674(00)00213-0

  63. Pitzschke, A., Schikora, A. & Hirt, H. (2009). “MAPK Cascade Signalling Networks in Plant Defence.” Current Opinion in Plant Biology, 12 (4), 421-426 https://doi.org/10.1016/j. pbi.2009.06.008

  64. Popescu, S. C., Popescu, G. V., Bachan, S., Zhang, Z., Gerstein, M., Snyder, M. & Dinesh-kumar, S. P. (2009). “MAPK Target Networks in Arabidopsis thaliana Revealed Using Functional Protein Microarrays.” Genes & Development, 23, 80–92. https://doi.org/10.1101/gad.1740009

  65. Rivas-San Vicente, M. & Plasencia, J. (2011). “Salicylic Acid beyond Defence: Its Role in Plant Growth and Development.” Journal of Experimental Botany, 62 (10), 3321–3338. https://doi.org/10.1093/jxb/err031

  66. Sethi, V., Raghuram, B., Sinha, A. K. & Chattopadhyay, S. (2014). “A Mitogen-Activated Protein Kinase Cascade Module, MKK3-MPK6 and MYC2, Is Involved in Blue Light-Mediated Seedling Development in Arabidopsis.” The Plant Cell, 26 (8), 3343–3357. https://doi.org/10.1105/ tpc.114.128702

  67. Sinha, A. K., Jaggi, M., Raghuram, B. & Tuteja, N. (2011). “Mitogen-Activated Protein Kinase Signaling in Plants under Abiotic Stress.” Plant Signaling and Behavior, 6 (2), 196–203. https://doi.org/10.4161/psb.6.2.14701

  68. Smékalová, V., Doskočilová, A., Komis, G. & Šamaj, J. (2013). “Crosstalk between Secondary Messengers, Hormones and MAPK Modules during Abiotic Stress Signalling in Plants.” Biotechnology Advances, 32 (1), 2-11. https://doi. org/10.1016/j.biotechadv.2013.07.009

  69. Smékalová, V., Luptovčiak, I., Komis, G., Šamajová, O., Ovečka, M., Doskočilová, A., Takáč, T., Vadovič, P., Novák, O., Pechan, T., Ziemann, A., Košutová, P. & Šamaj, J. (2014). “Involvement of YODA and Mitogen Activated Protein Kinase 6 in Arabidopsis Post-Embryogenic Root Development through Auxin up-Regulation and Cell Division Plane Orientation.” New Phytologist, 203 (4), 1175–1193. https://doi.org/10.1111/nph.12880

  70. Stanko, V., Giuliani, C., Retzer, K., Djamei, A., Wahl, V., Wurzinger, B., Wilson, C., Heberle-Bors, E., Teige, M. & Kragler, F. (2014). “Timing Is Everything: Highly Specific and Transient Expression of a Map Kinase Determines Auxin-Induced Leaf Venation Patterns in Arabidopsis.” Molecular Plant, 7 (11), 1637–1652. https:// doi.org/10.1093/mp/ssu080

  71. Suarez-Rodriguez, M. C., Adams-Phillips, L., Liu, Y., Wang, H., Su, S., Jester, P. J., Zhang, S., Bent, A. F. & Krysan, P. J. (2007). “MEKK1 Is Required for Flg22-Induced MPK4 Activation in Arabidopsis Plants.” Plant Physiology, 143 (2), 661–669. https://doi.org/10.1104/pp.106.091389

  72. Takahashi, F., Yoshida, R., Ichimura, K., Mizoguchi, T., Seo, S., Yonezawa, M., Maruyama, K., Yamaguchi-Shinozaki, K. & Shinozaki, K. (2007). “The Mitogen-Activated Protein Kinase Cascade MKK3-MPK6 Is an Important Part of the Jasmonate Signal Transduction Pathway in Arabidopsis.” The Plant Cell Online, 19 (3), 805–818. https://doi. org/10.1105/tpc.106.046581

  73. Teige, M., Scheikl, E., Eulgem, T., Dóczi, R., Ichimura, K., Shinozaki, K., Dangl, J. L, & Hirt, H. (2004). “The MKK2 Pathway Mediates Cold and Salt Stress Signaling in Arabidopsis.” Mol Cell, 15 (1), 141–152. https://doi. org/10.1016/j.molcel.2004.06.023

  74. Tena, G. & Renaudin, J. P. (1998). “Cytosolic Acidification but Not Auxin at Physiological Concentration Is an Activator of MAP Kinase in Tobacco Cells.” Plant Journal, 16 (2), 173– 182. https://doi.org/10.1046/j.1365-313X.1998.00283.x

  75. Thulasi Devendrakumar, K., Li, X. & Zhang, Y. (2018). “MAP Kinase Signalling: Interplays between Plant PAMP- and Effector-Triggered Immunity.” Cellular and Molecular Life Sciences, 75 (16), 2981–2989. https://doi.org/10.1007/ s00018-018-2839-3

  76. Verma, D., Bhagat, P. K. & Sinha, A. K. (2020). “MKK3- MPK6-MYC2 Module Positively Regulates ABA Biosynthesis and Signalling in Arabidopsis.” Journal of Plant Biochemistry and Biotechnology, 29 (4), 785–795. https://doi.org/10.1007/s13562-020-00621-5

  77. Wang, H., Ngwenyama, N., Liu, Y., Walker, J. C. & Zhang, S. (2007). “Stomatal Development and Patterning Are Regulated by Environmentally Responsive Mitogen- Activated Protein Kinases in Arabidopsis.” Plant Cell, 19 (1), 63–73. https://doi.org/10.1105/tpc.106.048298

  78. Weyers, J. D. B. & Paterson, N. W. (2001). “Plant Hormones and the Control of Physiological Processes.” New Phytologist, 152 (3), 375–407. https://doi.org/10.1046/j.0028- 646X.2001.00281.x

  79. Woodward, A. W. & Bartel, B. (2018). “Biology in Bloom: A Primer on the Arabidopsis Thaliana Model System.” Genetics, 208 (4), 1337–1349. https://doi.org/10.1534/ genetics.118.300755

  80. Xing, Y., Jia, W. & Zhang, J. (2007). “AtMEK1 Mediates Stress-Induced Gene Expression of CAT1 Catalase by Triggering H2O2 Production in Arabidopsis.” Journal of Experimental Botany, 58 (11), 2969–2981. https://doi. org/10.1093/jxb/erm144

  81. Xing, Y., Jia, W. & Zhang, J. (2009). “AtMKK1 and AtMPK6 Are Involved in Abscisic Acid and Sugar Signaling in Arabidopsis Seed Germination.” Plant Molecular Biology, 70 (6), 725–736. https://doi.org/10.1007/s11103-009- 9503-0

  82. Xu, J. & Zhang, S. (2014). “Mitogen-Activated Protein Kinase Cascades in Signaling Plant Growth and Development.” Trends in Plant Science, 20 (1), 56-64. https://doi. org/10.1016/j.tplants.2014.10.001

  83. Yoo, S., Dong, Y., Hee, C., Guillaume, T., Yan, X. & Sheen, J. (2008). “Dual Control of Nuclear EIN3 by Bifurcate MAPK Cascades in C 2H4 Signalling.” Nature, 451 (7180), 789–795. https://doi.org/10.1038/nature06543

  84. Yoo, S. & Sheen, J. (2008). “MAPK Signaling in Plant Hormone Ethylene Signal Transduction.” Plant Signaling & Behavior, 3 (10), 848–849. https://doi.org/10.4161/ psb.3.10.5995

  85. Zhang, S. & Klessig, D. F. (2001). “MAPK Cascades in Plant Defense Signaling.” Trends in Plant Sience, 6 (11), 520–527. https://doi.org/10.1016/S1360-1385(01)02103-3

  86. Zhang, Y., Liu, J., Chai, J. & Xing, D. (2016). “Mitogen-Activated Protein Kinase 6 Mediates Nuclear Translocation of ORE3 to Promote ORE9 Gene Expression in Methyl Jasmonate- Induced Leaf Senescence.” Journal of Experimental Botany, 67 (1), 83–94. https://doi.org/10.1093/jxb/erv438




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2021;24